Nodules detection on computer tomograms using neural networks

Бесплатный доступ

Results of neural networks (NN) application to the problem of detecting neoplasms on computer tomograms of the lungs with limited amount of data are presented. Much attention is paid to the analysis and preprocessing of images as a factor improving the NN quality. The problem of NN overfitting and ways to solve it are considered. Results of the presented experiments allow drawing a conclusion about the efficiency of applying individual NN architectures in combination with data preprocessing methods to detection problems even in cases of a limited training set and a small size of detected objects.

Object detection, image processing, neural networks, yolo

Короткий адрес: https://sciup.org/143179412

IDR: 143179412   |   DOI: 10.25209/2079-3316-2022-13-3-81-98

Список литературы Nodules detection on computer tomograms using neural networks

  • L.Wei, K. Ding, H. Hu. “Automatic skin cancer detection in dermoscopy images based on ensemble lightweight deep learning network”, IEEE Access, 8 (2020), pp. 99633–99647. https://doi.org/10.1109/ACCESS.2020.2997710
  • K. L. Kehl, H. Elmarakeby, M. Nishino, Van Allen E.M., E. M. Lepisto, M. J. Hassett, B. J. Johnson, D. Schrag. “Assessment of deep natural language processing in ascertaining oncologic outcomes from radiology reports”, JAMA Oncol., 5:10 (2019), pp. 1421–1429. https://doi.org/10.1001/jamaoncol.2019.1800
  • A. Rodriguez-Ruiz, K. Lang, A. Gubern-Merida, M. Broeders, G. Gennaro, P. Clauser, Th. H. Helbich, M. Chevalier, T. Tan, Th. Mertelmeier, M. G. Wallis, I. Andersson, S. Zackrisson, R. M. Mann, I. Sechopoulos. “Stand-Alone artificial intelligence for breast cancer detection in mammography: Comparison with 101 radiologists”, Journal of the National Cancer Institute, 111:9, pp. 916–922. https://doi.org/10.1093/jnci/djy222
  • X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, Summers R. M.. “ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases”, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2097–2106. https://doi.org/10.1109/CVPR.2017.369 %
  • A. Bustos, A. Pertusa, J. -M. Salinas, de la Iglesia-Vayá M.. “PadChest: A large chest x-ray image dataset with multi-label annotated reports”, Med. Image Anal., 66 (2020), 101797. https://doi.org/10.1016/j.media.2020.101797
  • D. I. Kaliyev, O.Ya. Shvets. “Convolutional neural networks for solving fire detection problems based on aerial photography”, Program Systems: Theory and Applications, 13:1 (2022), pp. 195–213 (in Russian). https://doi.org/10.25209/hU2tR0tp7L:9/-/3p3s1t6a-.2p0s2ir2a-s1.3r-u1/-r1e9a5d-2/1p3sta2022_1_195-213.pdf
  • N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko. DE ... TR: End-to-end object detection with transformers, GitHub. UhtRtpLs://github.com/facebookresearch/detr
  • A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin. “Attention is all you need”, Advances in Neural Information Processing Systems 30, 31st Conference on Neural Information Processing Systems (NIPS 2017) (Long Beach, CA, USA), eds. I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett, 2017, ISBN 9781510860964, pp. 6000–6010.
  • T. -Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C. L. Zitnick. “Microsoft COCO: common objects in context”, Computer Vision – ECCV 2014, Lecture Notes in Computer Science, vol. 8693, eds. Fleet D., Pajdla T., Schiele B., Tuytelaars T., Springer, Cham, 2014, ISBN 978-3-319-10601-4, pp. 740–755. https://doi.org/10.1007/978-3-319-10602-1_48
  • K. He, X. Zhang, Sh. Ren, J. Sun. Deep residual learning for image recognition, 2015, 12 pp. arXivarXiv 1512.03385 [cs.CV] https://doi.org/10.48550/arXiv.1512.03385
  • A. Kolchev, D. Pasynkov, I. Egoshin, I. Kliouchkin, O. Pasynkova, D. Tumakov. “YOLOv4-based CNN model versus nested contours algorithm in the suspicious lesion detection on the mammography image: A direct comparison in the real clinical settings”, Journal of Imaging, 8:4 (2022), 88. https://doi.org/10.3390/jimaging8040088
  • S. M. Pizer, E.P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, ter Haar Romeny B., J. B. Zimmerman, K. Zuiderveld. “Adaptive histogram equalization and its variations”, Computer Vision, Graphics and Image Processing, 39:3 (1987), pp. 355–368.
Еще
Статья научная