Non-parametric identification and control algorithms for T-processes
Автор: Liksonova D.I., Raskina A.V.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Informatics, computer technology and management
Статья в выпуске: 4 vol.22, 2021 года.
Бесплатный доступ
In this paper, nonparametric identification and control methods are considered for multidimensional discrete-continuous processes with a delay inherent in many real productions. Such systems are typical for practice, including in the rocket and space industry, as well as in the technological processes of space technology production. Considering multidimensional processes, it is necessary to take into account the relationships between input and output variables, as well as their relationships with each other. Moreover, these connections are not always known to the researcher. When taking into account unknown connections of input variables, the researcher will deal with tubular processes or H-models, and when taking into account unknown connections of output variables, the model for one or another channel of the object will be analogs of implicit functions. In general, the model of a multidimensional object will be represented as a system of nonlinear implicit equations. In this case, the solution of the identification problem will be reduced to finding the prediction of the vector of output variables from the known values of the vector of input variables and can be obtained only as a result of solving the corresponding system of equations, which were called T-models. The solution of a system of nonlinear implicit equations by parametric identification methods will not lead to the desired result due to the lack of sufficient a priori information, and here there is a need for the use of nonparametric identification methods, as well as the use of system analysis methods. A priori information in the tasks of nonparametric statistics is insufficient, which conventional identification methods cannot cope with. When controlling multidimensional processes, it is necessary to take into account the dependencies of output variables, in connection with which another important feature arises, namely: random values from the domain of determining output variables cannot be used as setting influences; they must be selected from their common intersection.
Identification, control, multidimensional object, composite vectors, nonparametric algorithms
Короткий адрес: https://sciup.org/148329592
IDR: 148329592 | DOI: 10.31772/2712-8970-2021-22-4-600-612
Список литературы Non-parametric identification and control algorithms for T-processes
- Medvedev A. V. Osnovy teorii neparametricheskikh sistem [Fundamentals of the theory of nonparametric systems]. Krasnoyarsk, SibGU im. M. F. Reshetneva Publ., 2018, 732 p.
- Vasil’ev V. A., Dobrovidov A. V., Koshkin G. M. Neparametricheskoe otsenivanie funktsionalov ot raspredeleniy statsionarnykh posledovatel’nostey [Nonparametric Estimation of Functionals of Distributions of Stationary Sequences]. Moscow, Nauka Publ., 2004, 508 p.
- Pupkov K. A., Egupov N. D. Metody klassicheskoy i sovremennoy teorii avtomaticheskogo upravleniya: v 5 t. T. 1: Matematicheskie modeli, dinamicheskie kharakteristiki i analiz sistem upravleniya [Methods of classical and modern theory of automatic control: in 5 vol. Vol. 1: Mathematical models, dynamic characteristics and analysis of control systems]. Moscow, MGTU im. N. E. Baumana Publ., 2004. 748 p.
- Pupkov K. A., Egupov N. D. Metody klassicheskoy i sovremennoy teorii avtomaticheskogo upravleniya: v 5 t. T. 2: Statisticheskaya dinamika i identifikatsiya sistem avtomaticheskogo upravleniya [Methods of classical and modern theory of automatic control: in 5 vol. Vol. 2: Statistical dynamics and identification of automatic control systems]. Moscow, MGTU im. N. E. Baumana Publ., 2004. 640 p.
- Rozenblatt M. Remarks on some nonparametric estimates of density function. Ann. Math. Statist. 1956, Vol. 27, P. 832–837.
- Parzen E. On estimation of probability density function and mode. Ann. Math. Statist. 1962, Vol. 33, No. 3, P. 1065–1076.
- Tarasenko F. P. Neparametricheskaya statistika [Nonparametric statistics]. Tomsk, Izd-vo Tom. un-ta Publ., 1976, 292 p.
- Koshkin G. M., Piven I. G. Neparametricheskaya identifikatsiya stokhasticheskikh ob”ektov [Nonparametric identification of stochastic objects]. Khabarovsk, RAN Dal’nevostochnoe otdelenie Publ., 2009, 336 p.
- Medvedev A. V. [H-models for inertialess lag systems]. Vestnik SibGAU. 2012, No. 5, P. 84–89 (In Russ.).
- Medvedev A. V., Mihov E. D., Nepomnyashchiy O. V. [Mathematical modeling of H-processes]. Zhurnal Sibirskogo federal’nogo universiteta. Ser. Matematika i fizika. 2016, Vol. 9, No. 3, P. 338–346 (In Russ.).
- Medvedev A. V., Yareshchenko D. I. [Nonparametric algorithms for identification and control of multidimensional inertialess processes]. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel’naya tekhnika i informatika. 2020, No. 53, P. 72–81 (In Russ.).
- Medvedev A. V. [Theory of nonparametric systems. K-models]. Vestnik SibGAU. 2011, No. 3, P. 57–62 (In Russ.).
- Tsypkin Ya. Z. Adaptatsiya i obuchenie v avtomaticheskikh sistemakh [Adaptation and training in automatic systems]. Moscow, Nauka Publ., 1968, 399 p.
- Tereshina A. V., Yareshchenko D. I. [On nonparametric modeling of inertialess systems with delay]. Sibirskiy zhurnal nauki i tekhnologiy. 2018, Vol. 19, No. 3, P. 452–461 (In Russ.).
- Khardle V. Prikladnaya neparametricheskaya regressiya [Applied nonparametric regression]. Moscow, Mir Publ., 1993, 349 p.
- Nadaraya E. A. [Notes on Nonparametric Probability Density Estimates and Regression Curves]. Teoriya veroyatnostey i ee primenenie. 1970, Vol. 15, No. 1, p. 139–142 (In Russ.).
- Agafonov E. D., Medvedev A. V., Orlovskaya N. F., Sinyuta V. R., Yareshchenko D. I. [Pre-dictive model of the catalytic hydrodewaxing process under conditions of a lack of a priori infor-mation]. Izv. TulGU. 2018, No. 9, P. 456–468 (In Russ.).