Non-parametric multi-step algorithms for modeling and control of multi-dimensional inertia-free systems
Автор: D. I. Yareshchenko
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Informatics, computer technology and management
Статья в выпуске: 2 vol.21, 2020 года.
Бесплатный доступ
The paper discusses new classes of models of multidimensional inertia-free systems with a delay in the condi-tions of a lack of a priori information. The subject is multidimensional discrete-continuous processes, the com-ponents of the vector of output variables of which are stochastically dependent in an unknown way. There are also processes, through some channels of which aprior information corresponds simultaneously to both the par-ametric and nonparametric type of source data about the studied process. The mathematical description of such processes leads to a system of implicit nonlinear equations, some of which will be unknown, while others will be known with accuracy to the parameter vector. The main purpose of a model of an object having stochastic de-pendencies of output variables is to find a forecast of output variables with known input variables. To find the predicted values of the output variables from known inputs, it is necessary to solve a system of im-plicit nonlinear equations. The problem is to solve a system that is actually unknown, when only equations for some channels of a multidimensional system are known. Thus, a rather nontrivial situation arises when solving a system of implicit nonlinear equations under conditions when, in one channel of a multidimensional system, the equations themselves are not in the usual sense, and in others they are known accurate to parameters. Therefore, an object model cannot be constructed using the methods of the existing identification theory because of a lack of aprior information. The purpose of this work is the solution of the identification problem in the presence of a partially-parameterized discrete-continuous process, and despite the fact that the parameterization stage cannot be overcome without additional priori information about the process under study. The control algorithm for multidimensional processes with dependencies of output variables is a sequential multi-step algorithmic chain that allows finding the control action and bring the object to the desired state. Computational experiments to study the proposed models and to control multidimensional discrete-continuous processes have shown quite satisfactory results. The article presents the results of computational experiments illustrating the effectiveness of the proposed technology for predicting the values of output varia-bles from known input variables, as well as for managing these processes.
Multidimensional discrete-continuous process, identification, control, T-models, KT-models.
Короткий адрес: https://sciup.org/148321740
IDR: 148321740 | DOI: 10.31772/2587-6066-2020-21-2-215-223
Список литературы Non-parametric multi-step algorithms for modeling and control of multi-dimensional inertia-free systems
- Sinyuta V. R., Yareshchenko D. I. [On nonparametric modeling of the process of catalytic hydrodeparaffinization]. Мaterialy XXII Mezhdunar. nauch. konf. “Reshetnevskie chteniya” [Materials XXII Intern. Scientific. Conf “Reshetnev reading”]. Krasnoyarsk, 2018, P. 160–162 (In Russ.).
- Yareshchenko D. I. [Some notes on the assessment of knowledge of university students]. Otkrytoe obrazovanie. 2017, No. 4, P. 66–72 (In Russ.).
- Medvedev A. V. Osnovy teorii neparametricheskikh sistem. Identifikatsiya, upravlenie, prinyatie resheniy [Fundamentals of the theory of nonparametric systems. Identification, management, decision making]. Krasnoyarsk, SibGU im. M. F. Reshetneva Publ., 2018, 732 p.
- Tereshina A. V., Yareshchenko D. I. [On nonparametric modeling of inertialess systems with delay]. Sibirskiy zhurnal nauki i tekhnologiy. 2018, Vol. 19, No. 1, P. 37–44 (In Russ.).
- Moiseev N. N. Matematika stavit eksperiment [Mathematics is an experiment]. Moscow, Nauka Publ., 1979, 224 p.
- Medvedev A. V. Neparametricheskie sistemy adaptacii [Nonparametric adaptation systems]. Novosibirsk, Nauka Publ., 1983. 174 p.
- Vasil'ev V. A., Dobrovidov A. V., Koshkin G. M. Neparametricheskoe ocenivanie funkcionalov ot raspredelenij stacionarnyh posledovatel'nostej [Nonparametric estimation of functionals of stationary sequences distributions]. Moscow, Nauka Publ., 2004, 508 p.
- Cypkin Ya. Z., Osnovy informacionnoj teorii identifikacii [Fundamentals of information theory of identification]. Moscow, Nauka Publ., 1984, 320 p.
- Zarubin, V. S. Matematicheskaya statistika [Mathematical statistics]. Moscow, MGTU im. Baumana Publ., 2008, 424 p.
- Linnik Yu. V. Metod naimen'shikh kvadratov i osnovy teorii obrabotki nablyudeniy [Least Squares Method and the Basics of Observation Processing Theory]. Moscow, FIZMATLIT Publ., 1958, 336 p.
- Nadaraya Eh. A. Neparametricheskoe ocenivanie plotnosti veroyatnostej i krivoj regressii [Nonparametric estimation of probability density and regression curve]. Tbilisi, Tbilisskiy universitet Publ., 1983, 194 p.
- Zhivoglyadov V. P., Medvedev A. V. Neparametricheskie algoritmy adaptatsii [Nonparametric adaptation algorithms]. Frunze, Ilim Publ., 1974, 135 p.
- EHjkhoff P. Osnovy identifikacii sistem upravleniya [Basics of identification of control systems]. Moscow, Mir Publ., 1975, 7 p.
- Fel'dbaum A.A. Elektricheskie sistemy avtomaticheskogo regulirovaniya [Electric automatic control systems]. Moscow, Gos. izd-vo oboronnoy promyshlennosti Publ., 1957, 808 p.
- Antomonov Yu. G., Harlamov V. I. Kibernetika i zhizn' [Cybernetics and life]. Moscow, Sov. Rossiya Publ., 1968, 327 p.