Nondestructive testing method based on the spin polarization effect template

Бесплатный доступ

This paper proposes a novel nondestructive testing method for electrically conductive objects. It is based on applying a fundamentally new physical effect which has not been used before in nondestructive testing systems. The method utilizes spin polarization phenomena that occur when free electrons of conductive materials are exposed to an alternating electric field. Researchers experimented with wire and cable conductors. A tested cable was moving longitudinally and exposed to an alternating electric field, which excited a waveform process, i.e. the polarization of spin magnetic moments of free electrons. An induction sensor registered this process and generated a control signal: induction EMF. Its parameters were compared against that of a reference signal obtained in advance in the same way utilizing spin polarization phenomena. Parametric deviations were then used to detect and classify conductor defects. The paper describes how to generate a reference signal appropriate for the objectives of testing. The developed method enables nondestructive testing of objects made of any conductive para- and diamagnetic materials, while it accuracy and reliability are not affected by the magnitude or evenness of the object movement speed, nor by vibrations or transverse oscillations against the physical field source or the induction sensor.

Еще

Nondestructive testing, electrically conductive elements, electric cable, feedthrough two-electrode cylindrical capacitor with a concentrated capacity, induction sensor, intrinsic angular momentum (spin) of an electron, spin magnetic moment, resonance polarization frequency of the spin magnetic moments of free electrons

Еще

Короткий адрес: https://sciup.org/147234053

IDR: 147234053   |   DOI: 10.14529/power200205

Список литературы Nondestructive testing method based on the spin polarization effect template

  • Wang P., Qing Xu J., Su J. The research of urban distribution network high-reliability power supply construction. International Conference on Advanced Power System Automation and Protection, 2011, vol. 2, pp. 1497-1500. DOI: 10.1109/APAP.2011.6180744
  • Velasco L.N., Silva T.V., Oliveira J.C. et al. An approach to improve power supply continuity throughout the estimation of insulated power cable life expectance indexes. XI Brazilian Power Electronics Conference, 2011. DOI: 10.1109/C0BEP.2011.6085294
  • Town W.L. A review of eccentricity, capacitance and diameter gauges for continuous observation and recording of cable quality during manufacture. Power Engineering, 1962, vol. 109, pp. 151-162.
  • Jorrens P.P. Advances in computer-controlled measurements of cable parameters. IEEE Transactions on Instrumentation and Measurement, vol. 20 (4), pp. 231-234.
  • Cheng Zh., Yang Y. Design of the intelligent monitoring system for wire drawing process. 13th International Computer Conference on Wavelet Active Media Technology and Information Processing, 2016, pp. 418421.
  • Benjamin T.L. Power cable diagnostics: field application and case studies. Neta World USA, 2004. Available at: http:// electricityforum.com/td/wire-and-cable/power-cable-diagnostics.
  • Ida N., Meyendorf N. Handbook of advanced non-destructive evaluation. Springer Nature Switzerland AG, 2018. DOI: 10.1007/978-3-319-30050-4_13-1
  • John V.B. Non-destructive Testing. Testing of Materials. Palgrave London, 1992, pp. 90-125. DOI: 10.1007/978-1-349-21969-8_8
  • Fedorov E.M., Koba A.A. Three-axis laser method for measuring the diameter of cylindrical objects. Proc. Dynamics of Systems, Mechanisms and Machines, 2016, pp. 1-4. DOI: 10.1109/Dynamics.2016.7819008
  • Lee Shih-Hsiung, Yang Chu-Sing. A simple remote auxiliary inspection system. 10th International Conference on Intelligent Computation Technology and Automation, 2017, pp. 180-183. DOI: 10.1109/ICICTA.2017.47
  • Richter J., Streitferdt D., Rozovad E. On the development of intelligent optical inspections. IEEE 7th Annual Computing and Communication Workshop and Conference, 2017, pp. 1-6. DOI: 10.1109/CCWC.2017.7868455
  • Yan Tai-Shan, Cui Du-Wu. The method of intelligent inspection of product quality based on computer vision. 7th International Conference on Computer-Aided Industrial Design and Conceptual Design, 2006, pp. 1-6. DOI: 10.1109/CAIDCD.2006.329469
  • Zhang H., Yang R., He Y., Foudazi A., Cheng L., Tian G. A review of microwave thermography nondestructive testing and evaluation. Sensors, 2017, vol. 17 (5), p. 1123. DOI: 10.3390/s17051123
  • McDonald J.M., Lutz T.J., Ulrickson M.A., Tanaka T.J., Youchison D.L., Nygren R.E. Phase Lag Infrared Thermal Examination (PLITE); A new non-destructive test process. IEEE 22nd Symposium on Fusion Engineering, 2007, pp. 1-4. DOI: 10.1109/FUSION.2007.4337873
  • Su Yeong Jeong, Byoung Chul Kim, Young Han Kim. Defect detection in a cylinder using an IR thermographic device and point heating. International Conference on Control, Automation and Systems, 2007, pp. 2389-2392. DOI: 10.1109/ICCAS.2007.4406732
  • Chunli Fan, Fengrui Sun, Li Yang. A general quantitative identification algorithm of subsurface defect for infrared thermography. Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 2005, vol. 2, pp. 341-342. DOI: 10.1109/ICIMW.2005.1572552
  • Ruiz N., Vera P., Curpian J. et al. Matching pursuit-based signal processing method to improve ultrasonic flaw detection in NDT applications. Electronics Letters, 2003, vol. 39 (4), pp. 413-414. DOI: 10.1049/el:20030262
  • Sun H.C., Saniie J. Ultrasonic flaw detection using split-spectrum processing combined with adaptive-network-based fuzzy inference system. IEEE Ultrasonics Symposium. International Symposium, 1999, vol. 1, pp. 801-804. DOI: 10.1109/ULTSYM.1999.849518
  • Saniie J., Nagle D.T. Robust ultrasonic flaw detection using order statistic CFAR threshold estimators. IEEE Ultrasonics Symposium, 1991, vol. 2, pp. 785-789. DOI: 10.1109/ULTSYM.1991.234083
  • Mook G., Hesse O., Uchanin V. Deep Penetrating Eddy Currents and Probes. ECNDT, 2006. Available at: http ://ndt. net/article/ecndt2006/doc/Tu. 3.6.2 .pdf.
  • García-Martín J., Gómez-Gil J., Vázquez-Sánchez E. Non-destructive techniques based on eddy current testing. Sensors, 2011, vol. 11 (3), pp. 2525-2565. DOI: 10.3390/s110302525
  • Cardelli E., Faba A., Specogna R., Tamburrino A., Trevisan F., Ventre S. Analysis methodologies and experimental benchmarks for eddy current testing. IEEE Transactions on Magnetics, 2005, vol. 41 (5), pp. 13801383. DOI: 10.1109/TMAG.2005.844357
  • Janousek L., Smetana M., Strapácová T., Rebican M., Duca A. Advanced procedure for non -destructive diagnosis of real cracks from eddy current testing signals. Elektro, 2014, pp. 567-570. DOI: 10.1109/ELEKTRO.2014.6848961
  • Lehtiniemi R., Hartikainen J. An application of induction heating for fast thermal nondestructive evaluation. Review of Scientific Instruments, 1994, vol. 65, pp. 2099-2101. DOI: 10.1063/1.1144818
  • Zenzinger G., Bamberg J., Satzger W., Carl V. Thermographic crack detection by eddy current excitation. Nondestructive Testing and Evaluation, 2007, vol. 22 (2), pp. 101-111. DOI: 10.1080/10589750701447920
  • Tsopelas N., Siakavellas N. Experimental evaluation of electromagnetic-thermal non-destructive inspection by eddy current thermography in square aluminum plates. NDT & E International, 2011, vol. 44 (7), pp. 609-620. DOI: 10.1016/j.ndteint.2011.06.006
  • Wang Y., Gao X., Netzelmann U . Detection of surface cracks in metals under coatings by induction thermography. 14th quantitative infrared thermography conference, 2018, pp. 602-611. DOI: 10.21611/qirt.2018.064
  • Bryakin I.V., Bochkarev I.V., Khramshin V.R. The power cables quality diagnostics. International Russian Automation Conf, 2018. DOI: 10.1109/RUSAUTOCON.2018.8501787
  • Bryakin I.V., Bochkarev I.V., Khramshin V.R. Diagnostics of electrical wires and cables. International Conference on Industrial Engineering, Applications and Manufacturing, 2019. DOI: 10.1109/ICIEAM.2019.8742967
  • Woan G. The Cambridge handbook ofphysics formulas. Cambridge University Press, 2003. 230 p.
  • Bozorth R.M. Ferromagnetism. Wiley-IEEE Press, 1978. 968 p.
  • Morrish A.H. The physical principles of magnetism. Wiley-IEEE Press, 2001. 700 p.
Еще
Статья научная