Новый коллективный метод оптимизации на основе кооперации бионических алгоритмов

Автор: Ахмедова Шахназ Агасувар Кызы, Семенкин Евгений Станиславович

Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau

Рубрика: 2-я международная конференция по математическим моделям и их применению

Статья в выпуске: 4 (50), 2013 года.

Бесплатный доступ

Описывается и рассматривается новый самонастраивающийся коллективный подох, названный кооперацией бионических алгоритмов (COBRA), основанный на пяти хорошо известных бионических алгоритмах: стайные алгоритмы, алгоритмы волчьих стай, мотыльковые алгоритмы, поиск алгоритмом «кукушки». Кроме того, включены две модификации алгоритма COBRA. Также новый коллективный метод используется для настройки весовых коэффициентов нейронной сети в решении различных задач классификации.

Самонастройка, нейронная сеть, классификация, бионический алгоритм

Короткий адрес: https://sciup.org/148177168

IDR: 148177168

Текст научной статьи Новый коллективный метод оптимизации на основе кооперации бионических алгоритмов

Existing metaheuristic algorithms such as Particle Swarm Optimization or Firefly Algorithm, for example, start to demonstrate their power in dealing with tough optimization problems and even NP-hard problems. Five well-known and very similar to each other nature-inspired algorithms such as Particle Swarm Optimization (PSO) [1], Wolf Pack Search (WPS) [2], Firefly Algorithm (FFA) [3], Cuckoo Search Algorithm (CSA) [4] and Bat Algorithm (BA) [5] were investigated by authors of this paper. Each of above listed algorithms was originally developed for solving real-parameter unconstrained optimization problems and imitates a nature process or the behavior of an animal group. For instance Bat Algorithm is based on the echolocation behavior of bats; Cuckoo Search Algorithm was inspired by the obligate brood parasitism of some cuckoo species by laying their eggs in the nests of other host birds (of other species), and so on.

Unconstrained optimization. Various test unconstrained optimization problems with various dimensions were used for the preliminary investigation of all mentioned algorithms: Rosenbrock’s function, Sphere function, Ackley’s function, Griewank’s function, Hyper-Ellipsoidal function and Rastrigin’s functions [6]. The comparison of obtained results showed that we can’t say which approach is the most appropriate for any function and any dimension. The best results were obtained by

different methods for different problems and for different dimensions; in some cases the best algorithm differs even for the same test problem if the dimension varies. Each strategy has its advantages and disadvantages, so a natural question is whether is it possible to combine major advantages of above listed algorithms and try to develop a potentially better algorithm?

These observations brought researchers to the idea of formulating a new metaheuristic approach that combines major advantages of various algorithms. So a new optimization method based on PSO, WPS, FFA, CSA and BA was implemented and investigated. Proposed approach was called Co-Operation of Biology Related Algorithms (COBRA). Its basic idea consists in generating five populations (one population for each algorithm) which are then executed in parallel cooperating with each other (so-called island model).

Proposed algorithm is a self-tuning meta-heuristic. That is why there is no necessity to choose the population size for each algorithm. The number of individuals in each algorithm’s population can increase or decrease depending on the fact weather was the fitness value improving on current stage or not. If the fitness value wasn’t improved during a given number of generations, then the size of all populations increases. And vice versa, if the fitness value was constantly improved, then the size of all populations de-

Table 1

Results obtained by COBRA for the first six test problems

Func

Dimension

Success rate

Average population size

Average number of function evaluations

Average function value

STD

1

2

100

20

263

0.000652238

0.000346687

3

100

24

605

0.000750922

0.000290652

4

100

27

757

0.000790054

0.000297926

2

2

100

20

284

0.000753919

0.000272061

3

100

22

552

0.000783528

0.000290029

4

100

27

932

0.000817905

0.00028088

3

2

100

29

867

0.000588745

0.000307145

3

100

33

1470

0.000774339

0.000282613

4

100

32

1604

0.000739637

0.000372214

4

2

100

20

202

0.000678884

0.000320224

3

100

25

581

0.000749783

0.000282332

4

100

28

1085

0.000756105

0.000286405

5

2

100

22

369

0.000806724

0.000140685

3

100

22

574

0.000989866

0.00140048

4

100

28

885

0.000695163

0.000159342

6

2

100

27

860

180.001

0.000273844

3

100

40

2082

170.001

0.000247725

4

100

56

3877

160.001

0.000336504

Table 2

Performance comparison of COBRA and component algorithms (28 test functions from [7])

Func

Best D = 10

Mean D = 10

Best D = 30

Mean D = 30

1

PSO

PSO

PSO

COBRA

2

COBRA

COBRA

COBRA

COBRA

3

COBRA

COBRA

COBRA

COBRA

4

COBRA

COBRA

COBRA

COBRA

5

PSO

PSO

WPS

COBRA

6

COBRA

COBRA

COBRA

COBRA

7

COBRA

COBRA

COBRA

COBRA

8

WPS

COBRA

COBRA

COBRA

9

COBRA

COBRA

COBRA

COBRA

10

COBRA

COBRA

COBRA

COBRA

11

COBRA

COBRA

COBRA

COBRA

12

COBRA

COBRA

COBRA

COBRA

13

COBRA

COBRA

COBRA

COBRA

14

WPS

COBRA

COBRA

COBRA

15

COBRA

COBRA

COBRA

COBRA

16

COBRA

COBRA

COBRA

COBRA

17

PSO

COBRA

COBRA

COBRA

18

COBRA

COBRA

COBRA

COBRA

19

COBRA

COBRA

COBRA

COBRA

20

WPS

COBRA

COBRA

COBRA

21

PSO

COBRA

COBRA

COBRA

22

COBRA

COBRA

COBRA

COBRA

23

WPS

COBRA

COBRA

COBRA

24

COBRA

COBRA

COBRA

COBRA

25

FFA

COBRA

COBRA

COBRA

26

COBRA

COBRA

COBRA

COBRA

27

COBRA

COBRA

COBRA

COBRA

28

PSO

COBRA

COBRA

COBRA

Table 3

Func

Best

Worst

Mean

STD

Feasibility Rate

1

-0.727373

–0.559235

–0.637199

0.0594299

100

2

1.82813

4.34865

2.75755

0.926259

100

3

8.87653

8.89164

8.87895

0.00318718

92

4

5.57793

5.58908

5.58215

0.00312711

28

5

189.952

516.713

338.063

82.963

32

6

103.515

563.247

369.431

72.4124

24

7

0.529035

0.888604

0.566389

0.0676125

100

8

21.8649

53.8881

23.4468

6.23478

100

9

1.9133e+012

2.4654e+012

2.04001e+012

2.12584e+012

68

10

2.30765e+011

2.84432e+012

6.58941e+011

8.31906e+011

84

11

0.0002073305

0.00843533

0.00190705

0.000479151

68

12

–169.36

671.962

-102.82

228.253

0

13

–57.1851

-54.9831

-57.0463

0.429771

100

14

7.9878

1.72346e+007

6.97436e+006

8.37255e+006

100

15

6.9986e+009

4.94244e+011

7.56845e+010

1.22078e+011

100

16

0.724961

1.17519

0.826752

0.165962

56

17

103.275

321.092

111.988

42.6833

100

18

378.76

671.905

425.911

77.383

96

Table 4

Func

Best

Worst

Mean

STD

Feasible rate

1

–0.625073

-0.270351

-0.42015

0.132247

100

2

4.0493

5.03476

4.57562

0.395698

92

3

28.6807

28.707

28.6861

0.00729205

36

4

9.13159

9.13525

9.13303

0.00120324

20

5

478.746

555.016

485.285

18.7327

40

6

493.301

600.586

504.521

25.1907

32

7

0.334309

4.23197

1.61077

1.30831

100

8

470.46

1023.44

896.351

220.978

100

9

2.63268e+012

7.38962e+012

3.12913e+012

1.05068e+012

56

10

1.25487e+012

3.94721e+012

1.96828e+012

5.87269e+011

44

11

–0.00825323

-0.00281327

-0.00443743

0.000266256

16

12

155.45

720.707

403.327

105.636

0

13

-64.3938

-53.8018

-58.2296

4.54096

100

14

398.499

2.90799e+007

1.24046e+006

5.68939e+006

100

15

4.93728e+009

4.92773e+012

2.14661e+012

1.80896e+012

100

16

1.15237

1.37727

1.19964

0.0478142

8

17

332.563

381.055

344.201

20.7101

92

18

290.033

357.092

355.187

13.2994

100

Table 5

Results obtained by binary modification of COBRA

Func

Dimension

Success rate

Average population size

Average number of function evaluations

Average function value

STD

1

2

100

31

740

0.000182069

0.000248506

3

99

68

3473

0.000188191

0.000689647

4

93

80

6730

0.00579879

0.0242297

2

2

100

27

567

0.000236274

0.000265351

3

100

30

775

0.000150127

0.000168235

4

100

32

916

0.000355086

0.00029257

3

2

100

32

1439

0.00019874

0.000330485

3

91

51

2046

0.00150713

0.00245315

4

83

62

3030

0.00126295

0.00281119

4

2

100

33

931

0.000209168

0.000268542

3

100

32

868

0.000191162

0.000233884

4

92

79

1710

0.000347666

0.000257291

5

2

100

30

899

0.00032841

0.000468681

3

90

65

1332

0.000506847

0.00140048

4

90

160

2258

0.00411721

0.158903

6

2

100

28

1734

180.0002

0.000185362

3

98

36

3294

169.801

0.169149

4

96

41

5462

159.2

0.279294

Table 6

Classifier

Scoring in Australia

Scoring in Germany

2SGP

0.9027

0.8015

C4.5

0.8986

0.7773

Fuzzy

0.8910

0.7940

GP

0.8889

0.7834

CART

0.8744

0.7565

LR

0.8696

0.7837

CCEL

0.8660

0.7460

RSM

0,8520

0,6770

Bagging

0.8470

0.6840

Bayesian

0.8470

0.6790

Boosting

0.7600

0.7000

k-NN

0.7150

0.7151

This study: ANN+COBRA (5)

0,8907

0,7829

This study: ANN+COBRA (3)

0,8898

0,7809

Table 7

Author (year)

Method

Classification accuracy (%)

Quinlan (1996)

C4.5

94.74

Hamiton et al. (1996)

RAIC

95.00

Ster and Dobnikar (1996)

LDA

96.80

Nauck and Kruse (1999)

NEFCLASS

95.06

Pena-Reyes and Sipper (1999)

Fuzzy-GA1

97.36

Setiono (2000)

Neuro-rule 2a

98.10

Albrecht et al. (2002)

LSA machine

98.80

Abonyi and Szeifert (2003)

SFC

95.57

Übeyli (2007)

SVM

99.54

Polat and Günes (2007)

LS-SVM

98.53

Guijarro-Berdias et al. (2007)

LLS

96.00

Akay (2009)

SVM-CFS

99.51

Karabatak and Cevdet-Ince (2009)

AR + NN

97.40

Peng et al. (2009)

CFW

99.50

A. Marcano-Cedeño, J. Quintanilla-Domínguez, D. Andina (2011)

AMMLP

99.26

This study (2013)

ANN+COBRA (3x1)

97.62

ANN+COBRA (5x1)

97.67

ANN+COBRA (3x3)

98.16

Table 8

Classification accuracies obtained with COBRA and other classifiers for diabetes problem

Author (year)

Method

Classification accuracy (%)

Mehmet Recep Bozkurt1, Nilüfer Yur-tay, Ziynet Yilmaz1, Cengiz Sertkaya (2012)

PNN

72.00

LVQ

73.60

FFN

68.80

CFN

68.00

DTDN

76.00

TDN

66.80

Gini

65.97

AIS

68.80

H. Temurtas, N. Yumusak, F. Temurtas (2009)

MLNN with LM(10xFC)

79.62

PNN (10xFC)

78.05

MLNN with LM

82.37

PNN

78.13

S. M. Kamruzzaman, Ahmed Ryadh Hasan (2005)

FCNN with PA

77.344

K. Kayaer., T. Yildirim (2003)

GRNN

80.21

MLNN with LM

77.08

L. Meng, P. Putten, H. Wang (2005)

AIRS

67.40

This study (2013)

ANN+COBRA (3x1)

79.65

ANN+COBRA (5x1)

79.71

ANN+COBRA (3x3)

79.83

Optimization. Zhengzhou University, Computational Intelligence Laboratory, Zhengzhou China, and Nanyang Technological University, Singapore. 2012.

  • 8.    Eiben A.E., Smith J.E. Introduction to evolutionary computation. Springer, Berlin, 2003.

  • 9.    Deb K. An efficient constraint handling method for genetic algorithms. Computer methods in applied mechanics and engineering, 186(2-4). 2000. P. 311–338.

  • 10.    Liang J. J., Shang Zhigang, Li Zhihui. Coevolu-tionary Comprehensive Learning Particle Swarm Optimizer. In Proceedings of Congress on Evolutionary Computation (CEC). 2010. P. 1505–1512.

  • 11.    Mallipeddi R., Suganthan P. N. Problem Definitions and Evaluation Criteria for the CEC 2010 Competi-

  • tion on Constrained Real-Parameter Optimization. Nan-yang Technological University, Singapore. 2009.

  • 12.    Kennedy J., Eberhart R. C. A discrete binary version of the particle swarm algorithm. In Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics 1997, Piscataway, NJ. 1997. P. 4104– 4109.

  • 13.    Frank A., Asuncion, A. UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science. Citing Internet sources available from: < http://archive.ics.uci.edu/ml >. 2010.

Статья научная