Numerical simulation of modifying material distribution during the impulse induction heating of metal surface

Бесплатный доступ

Method of improvement of operational properties of surfaces is considered. Under study is the applicability of high- frequency electromagnetic field for metal heating and melting with a view to its subsequent modification. 2D numerical modeling of the processes during the modification of the substrate surface metal layer is carried out. The substrate surface is covered with a layer of specially prepared nano-size particles of refractory compounds, which are active crystallization centers after the penetration into the melt. The distribution of the electromagnetic energy in the metal is described by empirical formulas. The proposed mathematical model is used to consider the processes including heat- ing, phase transition and heat transfer in the molten metal, the nucleation and growth of the solid phase in the presence of a modifier material in the melt. Melting of the metal is considered at the Stephan’s approximation, and during solidi- fication all nano-size particles are assumed to be centers of volume-consecutive crystallization. The flow in the liquid is described by the Navier-Stokes equations in the Boussinesq approximation. The movement of the markers models the distribution of nano-size particles in the melt. According to the results of numerical experiments, the flow structure in the melt was evaluated versus the characteristics of induction heating and the amount of surface-active impurities in the metal. The modes of the induction-pulse action are detected: they promote creating the flows for the homogeneous dis- tribution of modifying particles in the melt. Found that the application of high frequency electromagnetic field for heat- ing and melting of metals allows to modify the metal deeper in comparison with the use of a laser.

Еще

Numerical simulation, metal modification, impulse induction heating, heat transfer, nano-size refractory particles

Короткий адрес: https://sciup.org/148177716

IDR: 148177716

Список литературы Numerical simulation of modifying material distribution during the impulse induction heating of metal surface

  • Surface treatments by laser technology/M. A. Montealegre //Contemporary Materials. 2010. Vol. 1. P. 19-30.
  • Плазмохимический синтез ультрадисперсных порошков и их применение для модифицирования металлов и сплавов/В. П. Сабуров . Новосибирск: Наука, 1996. 312 с.
  • Марусин В. В. Высокочастотная импульсная закалка (ВИЗ) деталей//Обработка металлов (технология, оборудование, инструменты). 2004. № 2. С. 14-15.
  • Комбинированные технологии получения перспективных порошковых материалов, нанесения покрытий и упрочнения поверхностных слоев с регулируемой нано-и микроструктурой/О. П. Солоненко //Тяжелое машиностроение. 2007. № 10. С. 10-13.
  • He X., Fuerschbach P. W., DebRoy T. Heat transfer and fluid flow during laser spot welding of 304 stainless steel//J. Phys. D: Appl. Phys. 2003. Vol. 36. P. 1388-1398.
  • Role of surface active elements during keyhole mode laser welding/B. Ribic //Journal of Physics D: Applied Physics. 2011. Vol. 44(48), article № 485203.
  • Черепанов А. Н., Попов В. Н. Численный анализ влияния поверхностно-активного вещества в расплаве на распределение модифицирующих частиц и кристаллизацию при обработке поверхности металла лазерным импульсом//Теплофизика и аэромеханика. 2014. Т. 21, № 3. C. 273-281.
  • Donghua Dai, Dongdong Gu. Influence of thermo-dynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites//International Journal of Machine Tools & Manufacture. 2016. V. 100. P. 14-24.
  • Sahoo P., DebRoy T., McNallan M. J. Surface tension of binary metal-surface active solute systems under conditions relevant to welding Metallurgy//Metall. Trans. B. 1988. Vol. 19B. P. 483-491.
  • Ehlen G., Ludwig A., Sahm P. R. Simulation of Time-Dependent Pool Shape during Laser Spot Welding: Transient Effects//Metall. Mater. Trans. A. 2003. Vol. 34A. P. 2947-2961.
  • Павлов Н. А. Инженерные тепловые расчёты индукционных нагревателей. М.: Энергия, 1978. 120 с.
  • Будак Б. М., Соловьева Е. Н., Успенский А. Б. Разностный метод со сглаживанием коэффициентов для решения задач Стефана//Журн. вычисл. матем. и матем. физ. 1965. Т. 5, № 5. С. 828-840.
  • Marangoni Convection during Free Electron Laser Nitriding of Titanium/D. Höche //Metall. Mater. Trans. B. 2009. Vol. 40, No. 4. P. 497-507.
  • Баландин Г. Ф. Основы теории формирования слитка. М.: Машиностроение, 1979. 335 с.
  • Harlow F. H., Welch J. E. Numerical calculation of time-depend viscous incompressible flow of fluid with free surface//Phys. Fluids. 1965. Vol. 8. P. 2182-2189.
  • Patankar S. V., Spalding D. B. A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows//Int. J. Heat Mass Trans. 1972. Vol. 15. P. 1787-1806.
  • Chorin A. J. A numerical method for solving incompressible viscous flow problems//J. Comput. Phys. 1967. Vol. 2. P. 12-26.
Еще
Статья научная