Numerical simulation of radiotherapy beam interaction with soft tissues and pla plastic for 3D printing of dosimetric phantoms

Автор: Miloichikova I.A., Bulavskaya A.A., Polomoshnova D.A., Saburov V.O., Stuchebrov S.G.

Журнал: Сибирский онкологический журнал @siboncoj

Рубрика: Лабораторные и экспериментальные исследования

Статья в выпуске: 6 т.23, 2024 года.

Бесплатный доступ

Introduction. In the development of new methods of radiotherapy, studies of the biological effects of sparsely (photons, electrons) and densely (protons, ions) ionizing radiation are relevant. Reproducibility is a challenge in preclinical studies. Dosimetric phantoms of laboratory animals are an effective tool for dose assessment, facilitating standardization of tests conducted under different conditions. Existing phantoms often fail to address radiobiological issues like placing of biological samples or dosimetry detectors. A method for manufacturing dosimetric phantoms must be developed to accurately manufacturing products and modify their design in accordance with the task.

Еще

Dosimetric phantom, preclinical studies, numerical simulation, monte carlo method, percentage depth dose distribution, 3d printing technologies, pla plastic

Короткий адрес: https://sciup.org/140308738

IDR: 140308738   |   DOI: 10.21294/1814-4861-2024-23-6-62-69

Список литературы Numerical simulation of radiotherapy beam interaction with soft tissues and pla plastic for 3D printing of dosimetric phantoms

  • Zhuĭkova L.D., Choĭnzonov E.L., Ananina O.A., Odintsova I.N. Onkologicheskaya zabolevaemost' v Cibirskom i Dal'nevostochnom federal'nykh okrugakh. Sibirskii onkologicheskii zhurnal. 2019; 18(6): 5-11. https://doi.org/10.21294/1814-4861-2019-18-6-5-11.
  • Sostoyanie onkologicheskoĭ pomoshchi naseleniyu Rossii v 2023 godu. Pod red. A.D. Kaprina, V.V. Starinskogo, A.O. Shakhzadovoi. M., 2024. 262 s.
  • Koryakina E.V., Potetnya V.I., Troshina M.V., Efimova M.N., Baĭkuzina R.M., Koryakin S.N., Lychagin A.A., Pikalov V.A., Ul'yanenko S.E. Sravnenie biologicheskoi effektivnosti uskorennykh ionov ugleroda i tyazhelykh yader otdachi na kletkakh kitaiskogo khomyachka. Radiatsiya i risk. 2019; 28(3): 96-106.
  • Suckert T., Müller J., Beyreuther E., Azadegan B., Brüggemann A., Bütof R., Dietrich A., Gotz M., Haase R., Schürer M., Tillner F., von Neubeck C., Krause M., Lühr A. High-precision image-guided proton irradiation of mouse brain sub-volumes. Radiother Oncol. 2020; 146: 205-12. https://doi.org/10.1016/j.radonc.2020.02.023.
  • Desrosiers M., DeWerd L., Deye J., Lindsay P., Murphy M.K., Mitch M., Macchiarini F., Stojadinovic S., Stone H. The Importance of Dosimetry Standardization in Radiobiology. J Res Natl Inst Stand Technol. 2013; 118: 403-18. https://doi.org/10.6028/jres.118.021.
  • Esplen N., Therriault-Proulx F., Beaulieu L., Bazalova-Carter M. Preclinical dose verification using a 3D printed mouse phantom for radiobiology experiments. Med Phys. 2019; 46(11): 5294-303. https://doi.org/10.1002/mp.13790.
  • Manmadhachary A., Malyala S.K., Alwala A.M. Medical applications of additive manufacturing. Proceedings of the International Conference on ISMAC in Computational Vision and Bio-Engineering. Springer International Publishing. 2019; 1643-53. https://doi.org/10.1007/978-3-020-00665-5_152.
  • Tino R., Yeo A., Leary M., Brandt M., Kron T. A Systematic Review on 3D-Printed Imaging and Dosimetry Phantoms in Radiation Therapy. Technol Cancer Res Treat. 2019; 18. https://doi.org/10.1177/1533033819870208.
  • Jusufbegović M., Pandžić A., Šehić A., Jašić R., Julardžija F., Vegar-Zubović S., Beganović A. Computed tomography tissue equivalence of 3D printing materials. Radiography (Lond). 2022; 28(3): 788-92. https://doi.org/10.1016/j.radi.2022.02.008.
  • Okkalidis N. 3D printing methods for radiological anthropomorphic phantoms. Phys Med Biol. 2022; 67(15). https://doi.org/10.1088/1361-6560/ac80e7.
  • Salmi M. Additive Manufacturing Processes in Medical Applications. Materials (Basel). 2021; 14(1): 191. https://doi.org/10.3390/ma14010191.
  • Savi M., Andrade M.A.B., Potiens M.P.A. Commercial filament testing for use in 3D printed phantoms. Radiation Physics and Chemistry. 2020; 174(9). https://doi.org/10.1016/j.radphyschem.2020.108906.
  • Cojocaru V., Frunzaverde D., Miclosina C.O., Marginean G. The Influence of the Process Parameters on the Mechanical Properties of PLA Specimens Produced by Fused Filament Fabrication-A Review. Polymers (Basel). 2022; 14(5): 886. https://doi.org/10.3390/polym14050886.
  • Mille M.M., Griffin T.K., Maass-Moreno R., Lee C. Fabrication of a pediatric torso phantom with multiple tissues represented using a dual nozzle thermoplastic 3D printer. Journal of Applied Clinical Medical Physics. 2020; 21:(11): 226-36. https://doi.org/10.1002/acm2.13064.
  • Auffray L., Gouge P.A., Hattali L. Design of experiment analysis on tensile properties of PLA samples produced by fused filament fabrication. The International. Journal of Advanced Manufacturing Technology. 2022; 118(3): 4123-37. https://doi.org/10.1007/s00170-021-08216-7.
  • Larsson E., Ljungberg M., Strand S.E., Jönsson B.A. Monte Carlo calculations of absorbed doses in tumours using a modified MOBY mouse phantom for pre-clinical dosimetry studies. Acta Oncol. 2011; 50(6): 973-80. https://doi.org/10.3109/0284186X.2011.582517.
  • Özseven A., Ümit K. Verification of Percentage Depth-Doses with Monte Carlo Simulation and Calculation of Mass Attenuation Coefficients for Various Patient Tissues in Radiation Therapy. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2020; 11(2): 224-30. https://doi.org/10.22312/sdusbed.705468.
  • Radiation Therapy Dosimetry: A Practical Handbook. Ed by A. Darafsheh. CRC Press. 2021. 504 p.
  • Geant 4 [Internet]. CERN, Geneva, c1998-2024 [cited 2024 Sep 1]. URL: https://geant4.web.cern.ch.
  • Mettivier G., Guatelli S., Brown J., Incerti S. Advances in Geant4 application in Physics, Medicine and Biology frontiers. Phys Med. 2024; 124. https://doi.org/10.1016/j.ejmp.2024.103371.
  • Ribon A., Apostolakis J., Dotti A., Folger G., Ivanchenko V., Kosov M., Uzhinsky V., Wright D.H. Status of GEANT4 hadronic physics for the simulation of LHC experiments at the start of LHC physics program. CERN-LCGAPP. 2010; 2.
  • Miloichikova I., Bulavskaya, A., Bushmina E., Dusaev R., Gargioni E., Gavrikov B, Grigorieva, A., Stuchebrov S. Development and verification of a Geant4 model of the electron beam mode in a clinical linear accelerator. Journal of Instrumentation. 2024; 19(7). https://doi.org/10.1088/1748-0221/19/07/C07007.
  • DeWerd L.A., Kunugi K. Accurate Dosimetry for Radiobiology. Int J Radiat Oncol Biol Phys. 2021; 111(5): 75-81. https://doi.org/10.1016/j.ijrobp.2021.09.002.
  • De Almeida C.E., Salata C. Absolute, reference, and relative dosimetry in radiotherapy. Dosimetry. IntechOpen. 2022. https://doi.org/10.5772/intechopen.101806.
  • ICRP [Internet]. [cited 2024 Sep 10]. URL: https://www.icrp.org/index.asp.
  • National Institute of Standards and Technology [Internet]. ESTAR [cited 2024 Sep 10]. URL: https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html.
  • Khan F.M., Gibbons J.P. Khan’s the physics of radiation therapy. 5th ed. Lippincott Williams & Wilkins. 2014. 624 p.
  • Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose To Water. Vienna: International Atomic Energy Agency, 2024. https://doi.org/10.61092/iaea.ve7q-y94k.
Еще
Статья научная