О факторах, влияющих на токсичность протравителей семян для симбиотических азотфиксаторов в составе биопрепаратов
Автор: Косульников Ю.В., Лактионов Ю.В.
Журнал: Сельскохозяйственная биология @agrobiology
Рубрика: Агротехнологии
Статья в выпуске: 5 т.53, 2018 года.
Бесплатный доступ
Основой современного производства биопрепаратов азотфиксаторов служат симбиотические микроорганизмы семейства Rhizobiaceae, так как свободноживущие микроорганизмы, не проявляющие хозяйской специфичности в отношении вида возделываемой культуры, обладают значительно меньшей азотфиксирующей способностью, чем бобово-ризобиальный симбиоз, формируемый видоспецифичными клубеньковыми бактериями. Однако распространению предпосевной инокуляции семян бобовых и более широкому применению биопрепаратов клубеньковых бактерий мешает ряд объективных недостатков таких препаратов, например сравнительно низкая устойчивость ризобий к неблагоприятным факторам среды. К таким факторам относится прямой контакт бактерий с агрессивными веществами, например с химическими фунгицидам, используемыми для протравливания семян. Мы впервые показали, что выживаемость ризобий зависит от температуры баковых растворов, а метод производства протравителя существенно влияет на совместимость инокулянтов и протравителей на основе одного и того же действующего вещества...
Симбиотические азотфиксаторы, биопрепараты, протравители семян, совместимость и токсичность
Короткий адрес: https://sciup.org/142216589
IDR: 142216589 | DOI: 10.15389/agrobiology.2018.5.1037rus
Текст научной статьи О факторах, влияющих на токсичность протравителей семян для симбиотических азотфиксаторов в составе биопрепаратов
Бобовые культуры — это главный источник растительного белка (1). Средняя урожайность бобовых в России сильно уступает (иногда в разы) аналогичному показателю в странах Европы и в США (2, 3). Одна из существенных причин — малая эффективность технологий, применяемых в большинстве случаев. Парадоксальность ситуации в том, что именно в суровых климатических условиях, которые характерны для большей части российских сельскохозяйственных угодий (Урал, Сибирь), необходимость в самых современных агротехнических приемах многократно возрастает (4, 5). К ним, в частности, относится использование препаратов симбиотических клубеньковых бактерий, которые, заселяя корневую систему растения, обеспечивают ему способность фиксировать атмосферный азот (6-8). На российском рынке они представлены, но пока не получили широкого распространения. В числе прочих причин — отсутствие обоснованных регла- ментов применения микробиологических препаратов совместно с химическими средствами защиты растений. На практике это неизбежно снижает эффективность и рентабельности биопрепаратов, ведет к прямым экономическим потерям и необоснованно дискредитирует метод, который признается одним из важных элементов биологизации, экологизации и повышения устойчивости современного сельскохозяйственного производства.
В состав протравителей входят токсичные для микроорганизмов вещества, поэтому бактерии, на основе которых готовят микробиологические препараты, попадают в неблагоприятные условия. К сожалению, изучение совместимости биопрепаратов и протравителей явно отстает от появления новых потенциально пригодных для практики штаммов, форм биопрепаратов (9, 10) и изменений в технологии производства протравителей под одной и той же маркой (11, 12). Протравители (гербициды, фунгициды, инсектициды и т.д.) уже давно показали эффективность, технологии их применения отработаны (13, 14) и закрепились в отечественном сельском хозяйстве. Поэтому, если существуют сомнения в результативности совместного применения биологических и химических препаратов, на практике предпочтение отдается последним (15, 16). Иными словами, дефицит научных работ по оценке совместимости микробиологических и химических методов обработки семян зернобобовых (17, 18) может стать причиной отказа от биопрепаратов, несмотря на их экологичность (19, 20), экономичность (21) и эффект (22, 23) при повышения урожайности зернобобовых. Следует отметить, что отечественные публикации по этой проблеме крайне немногочисленны (24, 25).
В настоящем исследовании впервые представлены реузльтаты, подтверждающие, что на совместимость инокулянтов и протравителей на основе одного и того же действующего вещества существенно влияет метод производства протравителя, то есть качественный и количественный состав (формуляция) дополнительных компонентов (полимеры-пленкообра-зователи, адъюванты, поверхностно-активные вещества и т.д., которые, по мнению производителей, повещают технологичность протравителя), а также температурный режим бакового раствора. Эти данные дополняют те ограниченные сведения, которые касаются совместимости препаратов клубеньковых бактерий и химических средств защиты бобовых.
Нашей целью было определение влияния марки протравителя, его концентрации в растворе, времени выдержки раствора и температурного режима на количество выживших в растворе клубеньковых бактерий сои, люпина, гороха и чечевицы.
Методика . Штаммы клубеньковых бактерий сои ( Bradyrhizobium ja-ponicum 634б), люпина ( Bradyrhizobium lupini 367а), гороха ( Rhizobium legu-minosarum 261б) и чечевицы ( Rhizobium leguminosarum 712) были получены из ведомственной коллекции полезных микроорганизмов сельскохозяйственного назначения Всероссийского НИИ сельскохозяйственной микробиологии (ВНИИСХМ, г. Санкт-Петербург). Препараты готовили на полусинтетической среде (0,5 г/л K2HPO4, 0,2 г/л MgSO4•7H2O, 0,1 г/л NaCl, 1,0 г/л дрожжевого экстракта, 10,0 г/л маннита) с последующим культивированием (28 °С, 170 об/мин, орбитальный шейкер-инкубатор ES-20/60, «BioSan», Латвия).
Были использованы следующие химические фунгициды: Maxim, КС (д.в. флудиоксонил, 25 г/л; «Syngenta International AG», Швейцария), Протект, КС (д.в. флудиоксонил, 25 г/л; ООО «Агро Эксперт Груп», Россия, «Agro Expert Group Kft.», Венгрия), Протект Форте, ВСК (д.в. флуди-оксонил, 40 г/л + флутриафол, 30 г/л; ООО «Агро Эксперт Груп», Россия, 1038
«Agro Expert Group Kft.», Венгрия).
Фунгициды и клубеньковые бактерии смешивали (20 % раствор бактериальной суспензии с 10 % и 20 % растворами протравителя каждой исследуемой марки). Через определенные интервалы (0, 1, 2, 4 и 8 ч) титры бактерий определяли высевом на чашки Петри с полусинтетической средой (состав указан выше) с добавлением 20 г/л агар-агара. Смеси куль- тур и фунгицидов выдерживали в холодильной камере (2-5 °C), при комнатной температуре в условиях лаборатории (16-18 °C) и в термостате
(27,5 °C). Через 10 сут (время роста клубеньковых бактерий на чашках Пет- ри) подсчитывали образовавшиеся колонии (КОЕ).

Рис. 1. Доля выживших ризобий Bradyrhizobium japonicum 634б (I) , Bradyrhizobium lupini 367а (II) , Rhizobium legumi-nosarum 261б (III) и Rhizobium leguminosarum 712 (IV) в смеси с 10 % (а) и 20 % (б) растворами фунгицидов Maxim (1) , Протект (2) и Протект Форте (3) (смесь культур и фунгицидов выдерживалась 8 ч при 16-18 ° C).
Статистическую обработку данных проводили с использованием программы Microsoft Excel 10. Для подтверждения достоверности различий между вариантами на рисунках и в таблице представлены средние значения ( M ) и стандартные ошибки средних (±SEM). Различия оценивали по t -критерию Стьюдента и считали статистически значимыми при р < 0,05. Повторность опыта 3-кратная.
штаммов микроорганизмов был обусловлен
Результаты. Выбор наибольшей практической значимостью культур (соя, люпин, горох, чечевица) в современной России и странах СНГ. В России на основе этих штаммов выпускают биопрепараты для бобовых под коммерческим наименованием Ризоторфин® (производитель ВНИИСХМ).
Смешивание химических протравителей с препаратами ризобий негативно влияло на выживаемость последних. Устойчивость клубеньковых бактерий разных зернобобовых культур к пестицидам была различной и уменьшалась в последовательности клубеньковые бактерии сои, люпина, гороха, чечевицы. Токсичность пестицидов увеличивалась в таком порядке: Maxim, Протект, Протект Форте (рис. 1).
Выживаемость ризобий в смеси с протравителями также в значительной степени зависела от температуры, при которой выдерживали смесь. Чем токсичнее для ризобий был протравитель (рис. 2), тем нагляднее про- являлось положительное влияние низких температур на выживаемость клубеньковых бактерий. Роль температурного фактора возрастала с увеличением концентрации протравителя. Так, доля выживших клубеньковых бактерий сои в смеси с 10 % раствором фунгицида Maxim спустя 8 ч после смешения при 2-5 и 16-18 °C составляла соответственно 72,02 и 68,88 %. В то же время для 20 % раствора фунгицида получили значения 65,73 и 31,12 %. Выявленная закономерность оказалась справедлива для каждой исследованной пары биопрепарат—протравитель.
В ряде случаев действующее вещество фунгицида не было главным фактором, определяющим динамику сокращения числа ризобий. Напри- мер, в состав самого малотоксичного для всех исследованных видов ризо-бий протравителя Maxim входит то же действующее вещество и в той же концентрации, что и в состав значительно более токсичного препарата

Рис. 2. Число колоний Bradyrhizobium japonicum 634б в растворе с 20 % фунгицидами Maxim (А) и Протект Форте (Б) в зависимости от времени выдержки и температурного режима смеси: 1 — комнатная температура (контроль), 2 — 2-5 ° C, 3 — 16-18 ° C, 4 — 27,5 ° C.
Протект (табл.). При этом токсичность фунгицида Про-тект для ризобий сои и люпина оказалась сопоставима с токсичностью препарата Про-тект Форте, несмотря на то, что у последнего концентрация флудиоксонила практически в 2 раза больше, а также присутствует второе действующее вещество — флут-риафол (см. табл.). Контролем служил 20 % рабочий раствор бактериальных суспензий в водопроводной воде; все различия между опытными и соответствующими контрольными вариантами статистически значимы при р < 0,05.
Доля выживших ризобий в смеси с 10 и 20 % растворами фунгицидов в зависимости от времени с момента смешения (смесь выдерживали при температуре 16-18 °C) (M±SEM)
Время, ч |
Ризобии и концентрация фунгицида |
||||||
Bradyrhizobium |
Rhizobium |
||||||
japonicum 634 |
lupini 367а |
leguminosarum 261б |
leguminosarum 712 |
||||
10 % |
20 % |
10 % 20 % |
10 % |
20 % |
10 % |
20 % |
|
2 |
79,02±4,95 |
67,31±3,56 |
Maxim КС 82,56±5,64 73,76±4,26 83,43±5,23 |
81,6±5,26 |
81,67±5,27 |
63,33±3,21 |
|
4 |
75,52±4,20 |
65,91±3,24 |
75,36±4,58 69,92±3,98 |
74,11±4,13 |
67,2±3,89 |
71,67±7,13 |
60,00±3,14 |
8 |
68,88±3,98 |
31,12±1,72 |
64,48±3,67 47,36±2,58 |
70,19±3,98 |
34,7±1,94 |
41,67±2,10 |
23,33±0,79 |
2 |
75,20±4,45 |
50,30±3,12 |
Протект 60,69±3,33 33,49±1,49 |
КС 62,58±3,09 |
31,11±1,21 |
81,67±5,28 |
13,41±0,26 |
4 |
58,57±2,89 |
32,47±1,32 |
48,43±2,98 25,63±0,71 |
52,02±2,27 |
22,14±0,76 |
71,67±7,16 |
3,66±0,19 |
8 |
36,25±1,97 |
18,23±0,45 |
35,06±1,73 9,43±0,14 |
32,52±1,67 |
13,98±1,05 |
41,67±2,13 |
0,00 |
2 |
69,73±3,64 |
52,93±3,16 |
Протект Форте ВСК 55,03±3,57 38,76±2,03 39,00±1,99 |
17,00±0,54 |
2,62±0,16 |
0,00 |
|
4 |
46,12±2,31 |
27,73±0,86 |
46,64±2,75 18,12±0,41 |
36,00±1,75 |
14,00±0,34 |
1,07±0,12 |
0,00 |
8 |
28,68±0,95 |
22,03±0,69 |
22,65±0,74 3,69±0,10 |
22,00±0,68 |
1,00±0,12 |
0,12±0,10 |
0,00 |
П р и м еч а ни е. Все различия между опытными и соответствующими контрольными вариантами стати- |
|||||||
стически значимы при р < 0,05. |
Анализ данных отечественной и зарубежной литературы по факторам токсичности протравителей для бактерий показал, что действующие вещества большинства протравителей (в чистом виде) определены исследователями, как в той или иной степени токсичные по отношению к ризосферным микроорганизмам (26, 27), в том числе к клубеньковым бактериям (28, 29). Сообщается (30), что контакт ризобий сои на инокулированных семенах с такими распространенными фунгицидными веществами, как каптан и тирам (контактные фунгициды), а также беномил, карбендазим, дифеноконазол и тебуконазол (системные фунгициды), вызывает значительное сокращение числа жизнеспособных бактерий. Не все дей- ствующие вещества протравителей однозначно токсичны по отношению ко всем видам и штаммам ризобий. Так, в работе M. Tariq с соавт. (31) ризобии гороха определены как устойчивые к бензимидазолам. По данным другого исследования (32), флудиоксонил оказывает значительное токсическое действие на ризобии сои. Авторы утверждают (32), что контакт ризобий сои с флудиоксонилом на инокулированных семенах значительно снижает число выживших бактерий по сравнению с контролем через 24 и 48 ч после инокуляции. Добавление к инокулянту полимера альгината значительно повышало выживаемость ризобий в контакте с флуди-оксонилом (32). Это позволяет предположить, что в нашем опыте лучшая выживаемость ризобий в смеси с протравителем Maxim по сравнению с протравителем Протект связана не с большей токсичностью дополнительных компонентов в составе последнего, а с защитным действием на ризо-бии полимеров в препарате Maxim. В пользу такого предположения говорит тот факт, что некоторые водорастворимые полимеры действительно повышают общую стойкость ризобий к неблагоприятным условиям среды, в частности добавление в бактериальную суспензию альгината натрия и кар-боксиметилцеллюлозы значительно увеличивает сроки хранения бактериального препарата (33). По-видимому, важен не только состав и концентрации действующих веществ протравителя, но и состав и концентрации дополнительных компонентов (полимеры-пленкообразователи, поверхностноактивные вещества — ПАВ, эмульгаторы, антисептики и т.д.), то есть так называемая формуляция препаративной формы протравителя. В ряде исследований подтверждается сильнейшее влияние полимеров-пленкообразовате-лей, адъювантов и ПАВ на выживаемость бактерий в биопрепаратах (34).
Есть сообщения, что разные марки протравителей (35) и различные температурные режимы при хранении баковых растворов заметно влияют на выживаемость бактерий в таких растворах. В ряде работ показана способность ризобий разлагать пестициды (36), что, впрочем, достаточно распространено среди ризосферных микроорганизмов (37). По имеющимся данным (38, 39), медленнорастущие ризобии сои Bradyrhizobium japonicum и быстрорастущие ризобии сои Sinorhizobium fredii могут расти на минеральнорастительной агаризованной среде с добавлением производственной концентрации фунгицида Maxim. При этом интенсивность их роста либо не уступает таковой в контроле (38), либо незначительно снижается (39).
Стоит отметить, что отсутствие явного токсического эффекта протравителя в отношении ризобий в совместном баковом растворе вовсе не гарантирует от негативных последствий для клубенькообразования (40, 41). В ряде работ описано ингибирующее действие фунгицида Maxim на интенсивность формирования клубеньков у инокулированых растений сои (24), при том что протравливание семян и их инокуляция были разделены во времени. В то же время некоторые авторы указывают (39), что инокуляция семян сои с протравливанием фунгицидом Maxim обеспечивает более интенсивное клубенькообразование, прирост надземной массы и достоверную прибавку урожайности по сравнению с инокуляцией «в чистом виде».
Таким образом, мы можем утверждать, что среди исследованных ризобий наиболее устойчивыми к протравителям оказались клубеньковые бактерии сои (Bradyrhizobium japonicum 634б), наименее устойчивыми — клубеньковые бактерии чечевицы (Rhizobium leguminosarum 712). В свою очередь, среди использованных протравителей самым малотоксичным для ризобий был фунгицид Maxim, самым токсичным — Протект Форте. Протравители Maxim и Протект, приготовленные на основе одного и того же действующего вещества с одинаковой его концентрацией, резко различа- лись по токсичности. Вероятно, токсичность этих фунгицидов для клубеньковых бактерий связана не только и не столько с действующими веществами в их составе, сколько с теми дополнительными компонентами (полимеры-пленкообразователи, поверхностно-активные вещества, эмульгаторы, антисептики и т.д.), которые производители добавляют в протравитель той или иной марки для улучшения ее технологических свойств (формуляция препаративной формы протравителя). Нахождение ризобий в одном растворе с протравителями негативно сказывается на выживаемости бактерий: чем дольше выдерживалась смесь, тем меньше оставалось жизнеспособных ризобий. С ростом температуры смеси и концентрации протравителей в растворе их токсичность увеличивается. Низкие температуры (2-5 °C) значительно повышают выживаемость ризобий.
Список литературы О факторах, влияющих на токсичность протравителей семян для симбиотических азотфиксаторов в составе биопрепаратов
- Зотиков В.И., Грядунова Н.В., Наумкина Т.С., Сидоренко В.С. Зернобобовые культуры в экономике России. Земледелие, 2014, 4: 6-8.
- John R.P., Tyagi R.D., Brar S.K., Prevost D. Development of emulsion from rhizobial fermented starch industry wastewater for application as Medicago sativa seed coat. Eng. Life Sci., 2010, 10(3): 248-256 ( ) DOI: 10.1002/elsc.201000002
- Suzaki T., Yoro E., Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. Int. Rev. Cel. Mol. Bio., 2015, 316: 111-158 ( ) DOI: 10.1016/bs.ircmb.2015.01.004
- Никитин С.Н., Завалин А.А. Влияние удобрений и биопрепаратов на продуктивность зернопарового севооборота, потоки элементов питания и свойства чернозема выщелоченного в лесостепи среднего Поволжья. Агрохимия, 2017, 6: 12-29.
- Жеруков Б.Х. Биологический азот в сельском хозяйстве: проблемы, решения и перспективы развития. Известия Горского государственного аграрного университета, 2010, 47(2): 43-47.
- Миркин Б.М., Наумова Л.Г. Основы общей экологии. М., 2003.
- Beveridge C.A., Mathesius U., Rose R.J., Gresshoff P. Common regulatory themes in meristem development and whole-plant homeostasis. Curr. Opin. Plant Biol., 2007, 10(1): 44-51 ( ) DOI: 10.1016/j.pbi.2006.11.011
- Marra L.M., Fonsecs Sousa Soares C.R., Oliveira S.M., Avelar Ferreira P.A., Soares B.L. Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant Soil, 2012, 357: 289-307 ( ) DOI: 10.1007/s11104-012-1157-z
- Кожемяков А.П., Лактионов Ю.В., Попова Т.А., Орлова А.Г., Кокорина А.Л., Вайшля О.Б., Агафонов Е.В., Гужвин С.А., Чураков А.А., Яковлева М.Т. Агротехнологические основы создания усовершенствованных форм микробных биопрепаратов для земледелия. Сельскохозяйственная биология, 2015, 50(3): 369-376 ( ) DOI: 10.15389/agrobiology.2015.3.369rus
- Лактионов Ю.В., Попова Т.А., Андреев О.А., Ибатуллина Р.П., Кожемяков А.П. Создание стабильной формы ростстимулирующих микробиологических препаратов и их эффективность. Сельскохозяйственная биология, 2011, 3: 116-118.
- Rashmi P.A., Dayana J. Isolation of pesticide tolerating bacteria from cultivated soil in Kerala andthe study of the role of plasmid in pesticide tolerance. International Journal of Pure & Applied Bioscience, 2015, 3(1): 109-114.
- Налиухин А.Н., Лактионов Ю.В. Эффективность применения микроэлементного комплекса Аквамикс-Т при возделывании козлятника восточного в северной части Нечернозёмной зоны. Земледелие, 2015, 2: 25-27.
- Лаптиев А.Б., Кунгурцева О.В. Предпосылки и основы химической защиты гороха от болезней. Зернобобовые и крупяные культуры, 2016, 2: 99-103.
- Пимохова Л.И., Царапнева Ж.В. Комплексная защита люпина белого от антракноза. Зернобобовые и крупяные культуры, 2016, 3: 89-94.
- Potera C. Agriculture: pesticides disrupt nitrogen fixation. Environ. Health Persp., 2007, 115(12): A579 ( ) DOI: 10.1289/ehp.115-a579a
- Moorman T. Effects of herbicides on the survival of Rhizobium japonicum Strains. Weed Sci., 1986, 34(4): 628-633 ( ) DOI: 10.1017/S0043174500067564
- Reganold J.P., Papendick R.I., Parr J.F. Sustainable agriculture. Scientific American, 1990, 262: 112-120 ( ) DOI: 10.1038/scientificamerican0690-112
- Vance C.P. Symbiotic nitrogen fixation and phosphorous acquisition. Plant nutrition in the world of declining renewable resources. Plant Physiol., 2001, 127: 390-397.
- Gopalakrishnan S., Sathya A., Vijayabharathi R., Varshney R.K., Gowda C.L.L., Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech, 2015, 5(4): 355-377 ( ) DOI: 10.1007/s13205-014-0241-x
- Эседуллаев С.Т., Шмелева Н.В. Особенности аккумуляции азота многолетними бобовыми травами в чистых и смешанных посевах в Верхневолжье. Плодородие, 2016, 6(93): 16-18.
- Mmbaga G.W., Mtei K.M., Ndakidemi P.A. Yield and fiscal benefits of rhizobium inoculation supplemented with phosphorus (P) and potassium (K) in climbing beans (Phaseolus vulgaris L.) grown in Northern Tanzania. Agricultural Sciences, 2015, 6(8): 783-797 ( ) DOI: 10.4236/as.2015.68076
- Лактионов Ю.В., Белоброва С.Н., Кожемяков А.П., Воробьёв Н.И., Сергалиев Н.Х., Аменова Р.К., Тлепова А.С. Эффективность бобово-ризобиального симбиоза нут Cicer arientium L.-бактерии Mezorizobium cicer при использовании минеральных удобрений. Плодородие, 2013, 5: 24-25.
- Тихонович И.А., Завалин А.А., Благовещенская Г.Г., Кожемяков А.П. Использование биопрепаратов -дополнительный источник элементов питания растений. Плодородие, 2011, 3: 9-13.
- Борзенкова Г.А., Васильчиков А.Г. Применение эффективных протравителей и инокулянтов в технологии возделывания различных сортов сои. Земледелие, 2014, 4: 37-39.
- Борзенкова Г.А. Оптимизация технологии предпосевного протравливания и возможность его сочетания с инокуляцией для защиты сои от семенной инфекции. Зернобобовые и крупяные культуры, 2014, 1: 22-30.
- Yousaf S., Khan S., Aslam M.T. Effect of pesticides on the soil microbial activity. Pakistan J. Zool., 2013, 45(4): 1063-1067.
- Alam S., Kumar A., Kumar A., Prasad S., Tiwari A., Srivastava D., Srivastava S., Tiwari P., Singh J., Mathur B. Isolation and characterization of pesticide tolerant bacteria from brinjal rhizosphere. Int. J. Curr. Microbiol. App. Sci., 2018, Special Issue-7: 4849-4859.
- Drouin P., Sellami M., Prevost D., Fortin J., Antoun H. Tolerance to agricultural pesticides of strains belonging to four genera of Rhizobiaceae. Journal of Environmental Science and Health, Part B, 2010, 45(8): 780-788 ( ) DOI: 10.1080/03601234.2010.515168
- Deshmukh V.V., Raut B.T., Mane S.S., Ingle R.W., Josh M.S. Compatibility of Bradyrhizobium japonicum isolates with agrochemicals. American International Journal of Research in Formal, Applied & Natural Sciences, 2014, 6(1): 55-62.
- Campo R.J., Araujo R.S., Hungria M. Nitrogen fixation with the soybean crop in Brazil: compatibility between seed treatment with fungicides and bradyrhizobial inoculants. Symbiosis, 2009, 48: 154-163.
- Tariq M., Hameed S., Shahid M., Yasmeen T., Ali A. Effect of fungicides and bioinoculants on Pisum sativum. Research & Reviews: Journal of Botanical Sciences, 2016, 5(2): 36-40.
- Romero-Perdomo F.A., Camelo M., Bonilla R. Response of Bradyrhizobium japonicum to alginate in presence of pelleted fungicides on soybean seeds. Revista U.D.C.A Actualidad & Divulgación Científica, 2015, 18(2): 359-364.
- Rivera D., Obando M., Barbosa H., Tapias D.R., Buitrago R.B. Evaluation of polymers for the liquid rhizobial formulation and their influence in the Rhizobium-cowpea interaction. Universitas Scientiarum, 2014, 19(3): 265-275 ( ) DOI: 10.11144/Javeriana.SC19-3.eplr
- Leo Daniel A.E., Venkateswarlu B., Suseelendra D., Praveen Kumar G., Mir Hassan Ahmed S.K., Meenakshi T., Uzma S., Sravani P., Lakshmi Narasu M. Effect of polymeric additives, adjuvants, surfactants on survival, stability and plant growth promoting ability of liquid bioinoculants. J. Plant Physiol. Pathol., 2013, 1: 2.
- Ahemad M., Khan M.S. Ecotoxicological assessment of pesticides towards the plant growth promoting activities of Lentil (Lens esculentus)-specific Rhizobium sp. strain MRL3. Ecotoxicology, 2011, 20(4): 661-669 ( ) DOI: 10.1007/s10646-011-0606-4
- Moawad H., Abd El-Rahim W.M., Shawky H., Higazy A.M., Daw Z.Y. Evidence of fungicides degradation by rhizobia. Agricultural Sciences, 2014, 5(7): 618-624 ( ) DOI: 10.4236/as.2014.57065
- McGuinness M., Dowling D. Plant-associated bacterial degradation of toxic organic compounds in soil. Int. J. Environ. Res. Public Health, 2009, 6(8): 2226-2247 ( ) DOI: 10.3390/ijerph6082226
- Якименко М.В., Бегун С.А., Сорокина А.И. Совместимость коллекционных штаммов ризобий сои с фунгицидами и ростостимулирующими препаратами. Дальневосточный аграрный вестник, 2016, 2(38): 38-41.
- Якименко М.В. Совместное применение штаммов ризобий и некоторых препаратов для предпосевной обработки семян сои. Земледелие, 2016, 6, 46-48.
- Gomes Y.C.B., Dalchiavon F.C., Valadão de Assis F.C. Joint use of fungicides, insecticides and inoculants in the treatment of soybean seeds. Rev. Ceres, 2017, 64(3): 258-265 ( ) DOI: 10.1590/0034-737x201764030006
- Fox J.E., Gulledge J., Engelhaupt E., Burow M.E., McLachlan J.A. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. PNAS USA, 2007, 104(24): 10282-10287 ( ) DOI: 10.1073/pnas.0611710104