On the ultimate probability distribution formation for the equilibrium states of nonlinear dynamic systems having random parameters
Автор: Abramova Eu.L., Palkin Eu.A., Petrovich A.A.
Рубрика: Математическое моделирование
Статья в выпуске: 1-2, 2016 года.
Бесплатный доступ
The analyzing algorithms are proposed for the problems of equilibrium states formation in nonlinear dynamic structures when the appropriate ordinary differential equations system has random parameters and/or initial conditions. As an example, the mathematical model of “competition” is examined likewise modified V. Volterra equations to illustrate the analytical results for equilibrium coordinates distribution when t→+ ( t is a time ).
Короткий адрес: https://sciup.org/148160259
IDR: 148160259
Статья обзорная