О моделировании изменения смачиваемости металлической поверхности при лазерном текстурировании рельефа

Автор: Рыженков Артем Вячеславович, Дасаев Марат Равилевич, Григорьев Сергей Владимирович, Трушин Евгений Сергеевич

Журнал: Вестник Южно-Уральского государственного университета. Серия: Энергетика @vestnik-susu-power

Рубрика: Теплоэнергетика

Статья в выпуске: 4 т.21, 2021 года.

Бесплатный доступ

В последние годы со стороны исследователей возрос интерес к управлению смачиваемостью металлических поверхностей различными жидкостями в связи с широким спектром областей применения. В частности, применение гидрофобных функциональных поверхностей в теплоэнергетических установках и системах способствует повышению их эффективности и надежности. Несмотря на огромное количество существующих способов гидрофобизации металлических поверхностей, мировым научным сообществом был предложен и интенсивно развивается способ, основанный на текстурировании микро-/ наномасштабного рельефа с использованием лазерного оборудования (лазерная абляция). В данной работе было проведено исследование по определению влияния модификации латунных поверхностей с использованием лазерного оборудования на геометрические параметры текстурируемого рельефа и свойства смачиваемости, на основе результатов которого была предложена математическая модель прогнозирования смачиваемости.

Еще

Энергоэффективность, гидрофобность, угол смачивания, лазерное излучение, рельеф

Короткий адрес: https://sciup.org/147236645

IDR: 147236645   |   DOI: 10.14529/power210402

Список литературы О моделировании изменения смачиваемости металлической поверхности при лазерном текстурировании рельефа

  • Rizhenkov A.V. About reducing the hydraulic resistance of pipeline during the oil flow. Neftyanoe Khozyaystvo - Oil Industry, 2015, vol. 11, pp. 136-139.
  • Pakzad H., Liravi M., Moosavi A., Nouri-Borujerdi A., Najafkhani H. Fabrication of durable super-hydrophobic surfaces using PDMS and beeswax for drag reduction of internal turbulent flow. Applied Surface Science, 2020, vol. 513, p. 145754. DOI: 10.1016/j.apsusc.2020.145754
  • Piccolo A., Jaworski A.J. Experimental study of heat transfer characteristics of finned-tube and circular-pore heat exchangers in oscillatory flow. Applied Thermal Engineering, 2020, p. 116022. DOI: 10.1016/j .applthermaleng.2020.116022
  • Ryzhenkov O.V., Kurshakov A.V., Ryzhenkov A.V., Dasaev M.R., Grigoriev S.V. On intensification of heat exchange in steam condensers made of stainless steel and brass. International Journal of Innovative Technology and Exploring Engineering, 2019, vol. 8, pp. 2290-2294.
  • Bertsche D., Knipper P., Kapfer K., Wetzel T. Experimental investigation on heat transfer in laminar, transitional and turbulent circular pipe flow with respect to flow regime boundaries. International Journal of Heat and Mass Transfer, 2019, vol. 145, p. 118746. DOI: 10.1016/j.ijheatmasstransfer.2019.118746
  • Peng Q., Jia L., Ding Y., Dang C., Yin L., Yan X. Influence of groove orientation on dropwise condensation on hydrophobic and hierarchical superhydrophobic surfaces with microgroove arrays. International Communications in Heat and Mass Transfer, 2020, vol. 112, p. 104492. DOI: 10.1016/j.icheatmasstransfer.2020.104492
  • Misyura S.Y. Heat Transfer and Convection of Evaporating Sessile Droplets in Transition from Super-hydrophilic to Superhydrophobic Structured Wall: Optimization of Functional Properties. International Communications in Heat and Mass Transfer, 2020, vol. 112, p. 104474.
  • Samanta A., Wang Q., Shaw Scott K., Ding H. Roles of chemistry modification for laser textured metal alloys to achieve extreme surface wetting behaviors. Materials and Design, 2020, p. 108744. DOI: 10.1016/j.matdes.2020.108744
  • Boinovich L.B., Emelyanenko A.M., Modestov A.D., Domantovsky A.G., Shiryaev A.A., Emelyanenko K.A., Dvoretskaya O.V., Ganne A.A. Corrosion Behavior of Superhydrophobic Aluminum Alloy in Concentrated Potassium Halide Solutions: When the Specific Anion Effect Is Manifested. Corrosion Science, 2016, vol. 112, pp. 517-527. DOI: 10.1016/j.corsci.2016.08.019
  • Kotenko M., Oskarsson H., Bojesen C., Nielsen M.P. An experimental study of the drag reducing surfactant for district heating and cooling. Energy, 2019, vol. 178, pp. 72-78. DOI: 10.1016/j.energy.2019.03.134
  • Young T. An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, 1805, vol. 95, pp. 65-87. DOI: 10.1098/rstl.1805.0005
  • Chen W., Fadeev A., Hsieh M., Oner D., Youngblood J., McCarthy T.J. Ultrahydrophobic and ultralyophobic surfaces: some comments and examples. Langmuir, 1999, vol. 15, pp. 3395-3399.
  • Woodward I., Schofield W.C.E., Roucoules V., Badyal J.P.S. Super-hydrophobic Surfaces Produced by Plasma Fluorination of Polybutadiene Films. Langmuir, 2003, vol. 19, pp. 3432-3438.
  • Tserepi A., Gogolides E., Tsougeni K., Constantoudis V., Valamontes E. Tailoring the surface topography and wetting properties of oxygen-plasma treated polydimethylsiloxane. J. Appl. Phys, 2005, vol. 98, p. 113502. DOI: /10.1063/1.2136421
  • Cassie A.B.D. Contact angle. Discussions of the Faraday Society, 1948, vol. 3, p. 11.
  • Cassie A.B.D., Baxter S. Wettability of porous surfaces. Trans. Faraday Soc., 1944, vol. 40, pp. 546-551.
  • Wenzel R. Resistance of Solid Surfaces To Wetting By Water. Industrial and Engineering Chemistry, 1936, vol. 28, pp. 988-994.
  • Li S., Liu Y., Tian Z., Liu X., Han Z., Ren L. Biomimetic superhydrophobic and antibacterial stainless-steel mesh via double-potentiostatic electrodeposition and modification. Surface and Coatings Technology, 2020, p. 126355. DOI: 10.1016/j.surfcoat.2020.126355
  • Liu B., Wang W., Jiang G., Mei X., Wang Z., Wang K., Cui J. Study on hierarchical structured PDMS for surface super-hydrophobicity using imprinting with ultrafast laser structured models. Applied Surface Science, 2016, vol. 364, pp. 528-538. DOI: 10.1016/j.apsusc.2015.12.190
  • Ryzhenkov A.V., Dasaev M.R., Grigoriev S.V., Kurshakov A.V., Ryzhenkov O.V., Lukin M.V. Hydro-phobic brass surfaces created by means of multi-scale relief. International Journal of Mechanical Engineering and Technology, 2018, vol. 9, pp. 58-70.
  • Kuzminova A., Shelemin A., Kylian O., Petr M., Kratochvil J., Solar P., Biederman H. From super-hydrophilic to super-hydrophobic surfaces using plasma polymerization combined with gas aggregation source of nanoparticles. Vacuum, 2014, vol. 110, pp. 58-61. DOI: 10.1016/j.vacuum.2014.08.014
  • Rafieazad M., Jaffer J.A., Cui C., Duan X., Nasiri A. Nanosecond Laser Fabrication of Hydrophobic Stainless Steel Surfaces: The Impact on Microstructure and Corrosion Resistance. Materials (Basel, Switzerland), Sep. 2018, vol. 11, pp. 1577-1591.
  • Yang Z., Liu X., Tian Y. Novel Metal-organic Super-hydrophobic Surface Fabricated by Nanosecond Laser Irradiation in Solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, vol. 587, p. 124343. DOI: 10.1016/j.colsurfa.2019.124343
  • Yang Z., Liu X., Tian Y. Novel metal-organic superhydrophobic surface fabricated by nanosecond laser irradiation in solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, vol. 587. DOI: 10.1016/j.colsurfa.2019.124343
  • Won S.J., Kim H.S. Effects of laser parameters on morphological change and surface properties of aluminum alloy in masked laser surface texturing. Journal of Manufacturing Processes, 2019, vol. 48, pp. 260-269.
  • Shirsath G.B., Muralidhar K., Pala R.G.S., Ramkumar J. Condensation of water vapor underneath an inclined hydrophobic textured surface machined by laser and electric discharge. Applied Surface Science, 2019, vol. 484, pp. 999-1009.
  • Ngo C.-V., Chun D.-M. Fast wettability transition from hydrophobic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing. Applied Surface Science, 2017, vol. 409, pp. 232-240. DOI: 10.1016/j.apsusc.2017.03.038
Еще
Статья научная