About a new approach to calculating spiral clamps

Бесплатный доступ

The bearing capacity of spiral clamps, which are mounted on wires (cables) for their tension, connection, repair, etc., is studied. The design of spiral clamps is formed from stretched spirals that are wound onto conductors with an interference fit, which makes it possible to obtain tensile connections practically inseparable. The general problem of the interaction of spiral clamps and overhead line conductor layers is formulated. Different asymptotic solutions are given for initial and boundary value problems, and the design parameters of spiral clamps are determined to provide their carrying capacity. A wire layer is represented by the energy approach as an equivalent anisotropic elastic cylindrical shell, and wire construction as a whole is considered as a system of cylindrical shells inserted each other and interacting by forces of pressure and friction. The equivalence of the elastic properties of the shell to the properties of the wire layer is established using energy averaging. The constitutive relations obtained using the Castigliano theorem relate the generalized displacements and the corresponding forces. The matrix in these ratios is a stiffness matrix or flexibility matrix of a spiral wire structure. Such approach allows variety of interaction problems for spiral clamps with conductor layers to be solved, and the force transfer mechanism to be investigated from common positions. Static equations are written from the equilibrium of the elementary shell ring. It is considered that the length of the clamp is so great that the mutual influence of its ends can be neglected; the clamp is modeled as semi-infinite shell. This model allows the different initial and boundary value problems to be formulated, depending on the boundary conditions and clamp mounting methods on a conductor.

Еще

Conductor, spiral clamp, wire layer, energy averaging, membrane cylindrical shell, deformation, bearing capacity

Короткий адрес: https://sciup.org/146281969

IDR: 146281969   |   DOI: 10.15593/perm.mech/2019.4.06

Статья научная