To the development of innovative mineral additives based on alloy of Fe and Co antagonists as an example
Автор: Sizova E.A., Miroshnikov S.A., Lebedev S.V., Kudasheva A.V., Ryabov N.I.
Журнал: Сельскохозяйственная биология @agrobiology
Рубрика: Биологические основы кормопроизводства, кормовые добавки
Статья в выпуске: 4 т.51, 2016 года.
Бесплатный доступ
The problem of joint use of antagonist elements in the nutrition of farm animals is solved through a separate feeding with such trace elements and through an increase in the dosage of substances. The unique properties of nanomaterials allow us to suggest the promising alternative solutions by combining antagonists in a single drug, i.e. ultra-fine powders of metal alloys. In this paper, we for the first time compared the growth, haematological and biochemical parameters of broiler chickens (Russian cross Smena 7) after feeding them with individual salts of two microelements or their alloy in the form of nanoparticles. The pair of antagonists (iron and cobalt) was chosen due to the same mechanism of their absorption in intestine. Salts FeSO4х 7H2O and CoCl2 (group I) or the derived nanoparticles (d = 62.5 ± 0.6 nm) of the metal alloy (group II) were used as sources of iron and cobalt and mineral supplement. After calculation of the proportion of common microelement pool to the value of its entry with fodder expressed in percentage, the excess of iron up to 50.0 % was registered in the group when alloy nanoparticles applied (comparing to the pure iron), and the excess of cobalt was 34.7 %. Biological significance of the obtained values is the amount of the element deposited in the body expressed in grams per 100 grams of element entering with the incoming feed. In this case, growth rate increased and metabolism changes in chicken were registered. During the experiment, weight gain exceeded the control in group I by 6 % (p ≤ 0.05), and in group II by 11 % (p ≤ 0.001). Feed costs for growing chickens in the control group was 2.48 kg that is by 9.3 and 13.7 % more than in groups I and II, respectively. Using Co-Fe alloy increased weight gain by 4.1 % (p ≤ 0.05) compared with group I while the food consumption reduced by 4.8 %. Creatinine content in groups I and II was 63.9 % (p ≤ 0.01) and 38.3 % (p ≤ 0.05) higher than in the control, respectively. At the same time, the blood urea concentration in group I, and blood glucose level in group II increased compared to control by 38.5 % (p ≤ 0.05) and 36.5 % (p ≤ 0.05), respectively. However, the revealed increase of iron pool in group II was not associated with a significant increase in iron concentration in blood serum in relation to that in group I (it was possibly due to the homeostatic regulation, as an excess of iron may lead to the generation of reactive oxygen species) with a significant reduction in its concentration (by 74.3-78.3 %, p ≤ 0.01) in control at dietary iron deficiency. Using nanoparticle preparations was accompanied by an increase in fraction of arginine in liver of experimental chickens up to 8.10±0.105 % as compared with the control value of 5.05±0.075 % (note, the growth-promoting effects of L-arginine were described in literature).
Nanoparticles of iron and cobalt, broiler chicks, growth intensity, chemical elements
Короткий адрес: https://sciup.org/142213963
IDR: 142213963 | DOI: 10.15389/agrobiology.2016.4.553rus