On densest sets omitting distance 1 in spaces of small dimensions
Автор: Kupavskii A.B., Raigorodskii A.M., Titova M.V.
Журнал: Труды Московского физико-технического института @trudy-mipt
Рубрика: Хроматические числа пространств
Статья в выпуске: 1 (13) т.4, 2012 года.
Бесплатный доступ
In this paper, we study the value of the maximum upper density of a subset of the space Rd, which avoids distance 1, for d ≤ 8. We obtain new lower bounds on this value and apply the obtained results to solve a problem of geometric Ramsey theory.
Upper density, sets omitting distance one, chromatic number of a space, ramsey numbers, distance graphs, lattices, packings
Короткий адрес: https://sciup.org/142186199
IDR: 142186199
Статья научная