О распределении космических аппаратов по заданному числу орбит
Автор: Егорычев Г.П., Ширяева Т.А., Шлепкин А.К., Филлипов К.А., Савостьянова И.Л.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Информатика, вычислительная техника и управление
Статья в выпуске: 2 т.21, 2020 года.
Бесплатный доступ
Космические аппараты - дорогостоящий продукт. Например, только вывод такого аппарата на орбиту обходится минимум в сто миллионов долларов плюс стоимость самого спутника и научной аппаратуры, которую он несет. Однако современное состояние человеческой цивилизации уже не позволяет обходиться без наличия космических аппаратов на орбите. В международной базе данных на март 2019 г. числилось 2062 действующих спутника. По сравнению с 2018 г. рост числа новых аппаратов составил 15 %. Эксперты предупреждают, что в ближайшие годы мир ожидает «спутниковый бум» с прогнозируемым приростом количества аппаратов порядка 15-30 % ежегодно. Все эти космические аппараты сильно отличаются друг от друга. В настоящее время используется несколько орбит для размещения на них спутников в зависимости от решаемых ими задач. Геостационарная орбита используется для прямого телевещания. Низкие спутниковые орбиты используются для связи между спутниковыми телефонами. Свои орбиты существуют для спутников систем навигации (GPS, Navstar, ГЛОНАСС), военных спутников, спутников для различных научных исследований. Естественно, в этих условиях возникает задача распределения космических аппаратов по заданному числу орбит при некоторых ограничениях на нахождении космического аппарата на некоторых орбитах в зависимости от назначения космического аппарата. Рассматривается решение данной задачи при условии, что число космических аппаратов совпадает с числом возможных орбит, на которых эти космические аппараты могут находиться при некоторых дополнительных ограничениях на возможность расположения спутника на орбите. Получено несколько решений этой задачи, позволяющих вычислить число возможных комбинаций для таких распределений космических аппаратов по заданному числу орбит. (Русскоязычная версия представлена по адресу https://vestnik.sibsau.ru/articles/?id=677)
Спутник, орбита, подстановка, перманент
Короткий адрес: https://sciup.org/148321962
IDR: 148321962 | DOI: 10.31772/2587-6066-2020-21-2-170-175
Список литературы О распределении космических аппаратов по заданному числу орбит
- Dr. Kelso T. S. Basics of the Geostationari Orbit. Available at: http://www.celestrak.com/columns. (accessed 26.03.2020).
- Treaty on principles governing the activities of States in the exploration and use of outer space, including the moon and other celestial bodies. Available at: http://www.un.org/ru/documents/decl_conv/conventions/ outer_space_goveming.html (accessed 26.03.2020)
- Fateev V. F., Minkov S. [New direction of development of remote sensing of the Earth]. Izv. vuzov. Instrument making. 2004, Vol. 47, No. 3, P. 18-22 (In Russ.).
- Lebedeva A. A., Nesterenko O. P. Kosmicheskie sistemy nablyudeniya. Sintez i modelirovanie [Space observation systems. Synthesis and modeling]. Moscow, Mashinostroenie Publ., l99l, 224 p.
- Pob'ezdkov Yu. A. Kosmicheskaya s"emka Zemli 2006-2007 gg. [Space survey of the Earth 2006-2007]. Moscow, Radio engineering Publ., 2008, 275 p.
- Nevdyaevl L. M., Smirnova A. A. Personal'naya sputn'kovaya svyaz [Personal satellite communication]. Moscow, Eco-Trends Publ., 1998, 216 p.
- Fitken A. C. Determinants and Matrices. Edinburgh, 1939, 201 p.
- Riordan J. An introductions to combinatorial analysis. John Wiley & Sons, Inc., New York, 1982, 288 p.
- Minc H. Permanents. Encycloped'a of Mathematics and Its Appl'cat'ons. 1978, Vol. 6, P. 65-70 p.
- Egorychev G. P. D'skretnaya matemat'ka. Perma-nenty [Discrete Math. Permanents]. Krasnoyarsk, Siberian Federal University Publ., 2007, 272 p.
- Egorychev G. P. Integralnoe predstavlen'e ' vy-ch'slen'e komb'natornyh summ [Integral representation and computation of combinatorial Math.]. Novosibirsk, Nauka Publ., 1977.
- Kuzmin O. V. Introduction to combinatorial methods of discrete mathematics. Irkutsk, ISU Publishing House, 2012, 113 p.
- Aigner M. Combinatorial theory, Springer-Verlag, New York, 1979, 90 р.
- Touchard J. Sur un proble'me de permutations. Ed. C. R. Acad. Sci. Paris, 1934.
- Kaplansky I. Solution of the proble'me des me'nages. Bull. Amer. Math. Soc. 1943, Vol. 49, P. 784-785 p.