Mathematical model for surface bending
Автор: Oshorov B.B., Oshorov Bato B.
Журнал: Вестник Восточно-Сибирского государственного университета технологий и управления @vestnik-esstu
Статья в выпуске: 1 (46), 2014 года.
Бесплатный доступ
The paper investigates the mathematical model of infinitesimal bendings of the surface. This model is a system of Cauchy-Riemann equations, which allows exploring these deformations for the surfaces of positive curvature. In the case of an elliptic paraboloid is a vector of such deformations by analytical method as a solution of the Riemann-Hilbert problem with time - discontinuous boundary conditions for the Cauchy-Riemann equations. A numerical analysis of the resulting mathematical model at various specified boundary conditions is carried out.
Mathematical model, surface, curvature, infinitesimal bending, cauchy-riemann system, riemann-hilbert problem
Короткий адрес: https://sciup.org/142142826
IDR: 142142826