Области применения наземных газотурбинных двигателей

Автор: Хакимуллин Б.Р., Зайнуллин Р.Р.

Журнал: Теория и практика современной науки @modern-j

Рубрика: Основной раздел

Статья в выпуске: 4 (22), 2017 года.

Бесплатный доступ

В статье рассматриваются основные виды наземных газотурбинных двигателей и области их применения.

Стационарный газотурбинный двигатель, микротурбина, когенерационная установка

Короткий адрес: https://sciup.org/140271400

IDR: 140271400

Текст научной статьи Области применения наземных газотурбинных двигателей

Параллельно с развитием авиационных газотурбинных двигателей (ГТД) началось применение ГТД в промышленности и на транспорте. B 1939 г. швейцарская фирма A.G. Brown Bonery ввела в эксплуатацию первую электростанцию с газотурбинным приводом мощностью 4 МВт и КПД 17,4%. В 1941 г. вступил в строй первый железнодорожный газотурбовоз, оборудованный ГТД мощностью 1620 кВт разработки этой же фирмы. С конца 1940-х гг. ГТД начинают применяться для привода морских судовых движителей, а с конца 1950-х гг. – в составе газоперекачивающих агрегатов на магистральных газопроводах для привода нагнетателей [1].

Наземные ГТД различного назначения и класса мощности можно разделить на три основных технологических типа: стационарные ГТД; ГТД, конвертированные из авиадвигателей (авиапроизводные); микротурбины.

Стационарные ГТД разрабатываются и производятся на предприятиях энергомашиностроительного комплекса согласно требованиям, предъявляемым к энергетическому оборудованию: высокий ресурс (не менее 100 000 час) и срок службы (не менее 25 лет); высокая надежность; ремонтопригодность в условиях эксплуатации; умеренная стоимость применяемых конструкционных материалов и горючесмазочных материалов для снижения стоимости производства и эксплуатации.

При конвертации базового авиационного двигателя в наземный ГТД в случае необходимости заменяются материалы некоторых деталей холодной и горячей частей, наиболее подверженных коррозии. Так, например, магниевые сплавы заменяются на алюминиевые или стальные, в горячей части применяются более жаростойкие сплавы с повышенным содержанием хрома. Камера сгорания и система топливопитания модифицируются для работы на газообразном топливе или под многотопливный вариант. Дорабатываются узлы, системы двигателя (запуска, автоматического управления, противопожарная, маслосистема и др.) и обвязка для обеспечения работы в наземных условиях [2].

Особенности микротурбин обусловлены их исключительно малой размерностью и областью применения. Микротурбины используются в малой энергетике в составе компактных когенерационных установок как автономные источники электрической и тепловой энергии. Микротурбины имеют максимально простую конструкцию – одновальная схема и минимальное количество деталей. КПД микротурбин в простом цикле составляет 14-18%.

Области применения газотурбинных двигателей практически не ограничены: нефтегазодобывающая промышленность, промышленные предприятия, муниципальные образования. Положительным моментом использования ГТД в муниципальных образованиях является то, что содержание вредных выбросов в выхлопных газах NOх и CO находится на уровне 25 и 150 ppm соответственно позволяет устанавливать данное оборудование в черте города в жилом районе. Отдельное внимание стоит уделить возможности надстройки существующих котельных газотурбинными установками, что позволяет обеспечить надежное электроснабжение собственных нужд и снизить удельный расход топлива. Применение ГТД в Мини-ТЭС экономически оправдано в комплексе с утилизационными контурами. Это обусловлено достаточно низким электрическим КПД газовой турбины 22-37%. При этом соотношение вырабатываемой электрической энергии и тепловой составляет 1:1,5; 2,5. В зависимости от потребностей ГТД комплектуется паровыми или водогрейными котлами-утилизаторами, что позволяет получать либо пар (низкого, среднего, высокого давления) для технологических нужд, либо горячую воду с температурой выше 140°С. Выработанное тепло может быть использовано для производства холодной воды. В этом случае, как потребителя тепловой нагрузки, подключают абсорбционную холодильную машину (тригенерация). В составе комплексной выработки энергии общий КПД станции возрастает до 90%. Максимальная эффективность использования ГТД обеспечивается при длительной работе с максимальной электрической нагрузкой. В диапазоне мощностей порядка 10 МВт существует возможность использования комбинированного цикла газовых и паровых турбин. Это позволяет существенно повысить эффективность использования станции, увеличивая КПД до 47% [3].

ГТД предназначены для эксплуатации в любых климатических условиях как основной или резервный источник электроэнергии и тепла для объектов производственного или бытового назначения. Строительство таких электростанций в отдаленных (особенно северных) районах позволяет получить значительную экономию средств за счет исключения издержек на строительство и эксплуатацию протяженных линий электропередач, а для центральных районов – повысить надежность электрического, теплового снабжения как отдельных предприятий или организаций, так и территорий в целом.

За основу строительства электростанций ГТД взята концепция блочно-модульного построения. Электростанции состоят из максимально унифицированных отсеков и модулей, что позволяет в сжатые сроки создавать новые модификации агрегатов, а также совершенствовать, модернизировать устаревшие объекты с минимальными затратами.

Блочно-модульное исполнение обеспечивает высокий уровень заводской готовности газотурбинных электростанций. Они монтируются с применением универсальных грузоподъемных монтажных средств. Размеры блоков не превышают транспортные железнодорожные габариты.

Степень автоматизации газотурбинной электростанции позволяет отказаться от постоянного присутствия обслуживающего персонала в блоке управления. Контроль работы станции может осуществляться с главного щита управления, поставляемого вместе с комплектом оборудования энергоблока [4].

Список литературы Области применения наземных газотурбинных двигателей

  • Общие сведения о газотурбинных двигателях. [Электронный ресурс] / Режим доступа: http://refleader.ru/polpolrnajge.html.
  • Иноземцев А.А., Нихамкин М.А. Основы конструирования авиационных двигателей и энергетических установок. Общие сведения. Основные параметры и требования. Конструктивные и силовые схемы. М.: Машиностроение, 2008. - 208 с.
  • Гафуров А.М. Возможности повышения экономической эффективности газотурбинных двигателей типа АЛ-31СТ. // Энергетика Татарстана. - 2014. - № 1 (33). - С. 17-20.
  • Гафуров А.М., Осипов Б.М., Титов А.В., Гафуров Н.М. Программная среда для проведения энергоаудита газотурбинных установок. // Энергетика Татарстана. - 2015. - № 3 (39). - С. 20-25.
Статья научная