Обзор и анализ подходов и практических областей применения распознавания эмоций человека
Автор: Орлов А.А., Миронов М.И., Абрамова Е.С.
Рубрика: Информатика и вычислительная техника
Статья в выпуске: 4 т.23, 2023 года.
Бесплатный доступ
Человеческие эмоции сложны и многогранны, что делает их сложными для количественной оценки и анализа. Однако с развитием технологий исследователи изучают возможности использования искусственного интеллекта для лучшего понимания и классификации человеческих эмоций. В частности, нейронные сети становятся все более популярными для распознавания и анализа эмоций благодаря их способности обучаться и адаптироваться на основе больших массивов данных.
Нейронные сети, распознавание эмоций, сбор данных, человеческие эмоции, искусственный интеллект
Короткий адрес: https://sciup.org/147242613
IDR: 147242613 | DOI: 10.14529/ctcr230401
Список литературы Обзор и анализ подходов и практических областей применения распознавания эмоций человека
- Ильин В.И. «Чувства» и «эмоции» как социологические категории // Вестник Санкт-Петербургского университета. Социология. 2016. № 4. C. 28–40. [Ilyin V.I. “Feelings” and “emotions” as sociological categories. Vestnik of Saint Petersburg University. Sociology. 2016;4:28–40. (In Russ.)] DOI: 10.21638/11701/spbu12.2016.402
- Vizilter Y., Gorbatsevich V., Vorotnikov A., Kostromov N Real-time face identification via multiconvolutional neural network and Boosted Hashing Forest. Advances in Computer Vision and Pattern Recognition. 2017;PartF1:33–55. DOI: 10.1007/978-3-319-61657-5_2
- Navid M.S., Niazi I.K., Lelic D. et al. Investigating the effects of chiropractic spinal manipulation on EEG in stroke patients. Brain Sciences. 2020;5(10). DOI: 10.3390/brainsci10050253
- International Neural Network Society; Verband der Elektrotechnik; Institute of Electrical and Electronics Engineers. ANNA’18: Advances in Neural Networks and Applications 2018 September 15–17, 2018, St. St. Konstantin and Elena Resort, Bulgaria. Berlin, Germany: VDE Verlag GmbH; 2018. ISBN 9783800747566.
- Goshvarpour A., Abbasi A., Goshvarpour A. An Emotion Recognition Approach based on Wavelet Transform and Second-Order Difference Plot of ECG. Journal of AI and Data Mining. 2017;2(5):211–221. DOI: 10.22044/jadm.2017.887
- Дэвидсон Р., Бегли Ш. Эмоциональная жизнь мозга: пер. с англ. СПб.: Питер, 2017. 256 с. ISBN 978-5-4461-0515-1. [Davidson R.J., Sharon B. The Emotional Life of Your Brain. Hudson Street Press; 2012.].
- Grandgirard J., Poinsot D., Krespi L. et al. Costs of secondary parasitism in the facultative hyperparasitoid Pachycrepoideus dubius: Does host size matter? Entomologia Experimentalis et Applicata. 2002;3(103):239–248. DOI: 10.1023/A:1021193329749
- Iqtait M., Mohamad F.S., Mamat M. Feature extraction for face recognition via active shape model (ASM) and active appearance model (AAM). IOP Conference Series: Materials Science and Engineering. 2018. 332(1):012032. DOI: 10.1088/1757-899X/332/1/012032
- Zafeiriou S., Zhang C., Zhang Z. A survey on face detection in the wild: Past, present and future. Computer Vision and Image Understanding. 2015;138:1–24. DOI: 10.1016/j.cviu.2015.03.015
- Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.-Y., Berg A.C. SSD: single shot multibox detector. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2016;9905:21–37. DOI: 10.1007/978-3-319-46448-0_2
- Viola P., Jones M. Robust Real-Time Face Detection Intro to Face Detection. International Journal of Computer Vision. 2004;2(57):137–154. DOI: 10.1023/B:VISI.0000013087.49260.fb
- Azulay A., Weiss Y. Why do deep convolutional networks generalize so poorly to small image transformations? Journal of Machine Learning Research. 2019;20:1–25.
- Ganga Mohan P., Prakash C., Gangashetty S.V. Bessel transform for image resizing. In: International Conference on Systems, Signals, and Image Processing; 2011. P. 75–78.
- Owusu E., Abdulai J.-D., Zhan Y. Face detection based on multilayer feed-forward neural network and Haar features. Software: Practice and Experience. 2019;49(1):120–129. DOI: 10.1002/spe.2646
- Lowe D.G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision. 2004;60(2):91–110. DOI: 10.1023/B:VISI.0000029664.99615.94
- Tomasi C., Manduchi R. Bilateral Filtering for Gray and Color Images. In: Proceedings of the IEEE International Conference on Computer Vision. Bombay, India; 1998. P. 839–846.
- Delbracio M., Kelly D., Brown M.S., Milanfar P. Mobile Computational Photography: A Tour. Annual Review of Vision Science. 2021;7:571–604. DOI: 10.1146/annurev-vision-093019-115521
- Ojala T., Pietikainen M., Maenpaa T. Multi Resolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002;24(7):971–987. DOI: 10.1109/TPAMI.2002.1017623
- Horn B.K.P., Schunck B.G. Determining optical flow. Artificial Intelligence. 1981;17(1–3): 185–203. DOI: 10.1016/0004-3702(81)90024-2
- Zhao J., Mao X., Zhang J. Learning deep facial expression features from image and optical flow sequences using 3D CNN. Visual Computer. 2018;34(10):1461–1475. DOI: 10.1007/ s00371-018-1477-y
- Li S., Gong D., Yuan Y. Face recognition using Weber local descriptors. Neurocomputing. 2013;122:272–283. DOI: 10.1016/j.neucom.2013.05.038
- Revina I.M., Emmanuel W.R.S. Face expression recognition using weber local descriptor and F-RBFNN. In: Proc. 2nd International Conference on Intelligent Computing and Control Systems (ICICCS 2018). Madurai, India; 2018. P. 196–199. DOI: 10.1109/ICCONS.2018.8662891
- Peng Z. et al. Conformer: Local Features Coupling Global Representations for Visual Recognition. In: Proceedings of the IEEE International Conference on Computer Vision; 2021. P. 357–366. DOI: 10.1109/ICCV48922.2021.00042
- Бобе А.С., Конышев Д.В., Воротников С.А. Система распознавания базовых эмоций на основе анализа двигательных единиц лица // Инженерный журнал: наука и инновации. 2016. № 9 (57). С. 7. [Bobe A.S., Konyshev D.V., Vorotnikov S.A. Emotion recognition system based on the facial motor units’ analysis. Engineering Journal: Science and Innovation. 2016; 9(57):7. (In Russ.)] DOI: 10.18698/2308-6033-2016-9-1530
- Martínez A.M., Kak A.C. PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2001;23(2):228–233. DOI: 10.1109/34.908974
- Lyons M.J., Kamachi M.G., Gyoba J. The Japanese Female Facial Expression (JAFFE) Dataset. 1998. [Electronic resource] (accessed 19.12.2022).
- Perikos I., Ziakopoulos E., Hatzilygeroudis I. Recognize Emotions from Facial Expressions Using a SVM and Neural Network Schema. In: Engineering Applications of Neural Networks. EANN 2015. Communications in Computer and Information Science, vol 517. Springer, Cham.; 2015. DOI: 10.1007/978-3-319-23983-5_25
- Komala K. Human Emotion Detection and Classification Using Convolution Neural Network. European Journal of Molecular and Clinical Medicine. 2020; 6(7):237–245.
- Lucey P., Cohn J.F., Kanade T., Saragih J., Ambadar Z., Matthews I. The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition – Workshops, San Francisco, CA, USA; 2010. P. 94–101. DOI: 10.1109/CVPRW.2010.5543262
- An F., Liu Z. Facial expression recognition algorithm based on parameter adaptive initialization of CNN and LSTM. Visual Computer. 2020;36(3):483–498. DOI: 10.1007/s00371-019-01635-4
- Challenges in Representation Learning Facial Expression Recognition Challenge [Electronic resource]. Available at: https://www.kaggle.com/c/challenges-in-representation-learning-facial-expressionrecognition-challenge (accessed 19.12.2022).
- Cao T., Li M. Facial Expression Recognition Algorithm Based on the Combination of CNN and K-Means. In: Proc. 11th International Conference on Machine Learning and Computing (ICMLC 2019); 2019. P. 400–404. DOI: 10.1145/3318299.3318344
- Connie T., Al-Shabi M., Cheah W.P., Goh M. Facial Expression Recognition Using a Hybrid CNN-SIFT Aggregator. In: Conference: International Workshop on Multi-disciplinary Trends in Artificial Intelligence. 2017. DOI: 10.1007/978-3-319-69456-6_12
- Springenberg J.T., Dosovitskiy A., Brox T., Riedmiller M. Striving for simplicity: The all convolutional net. In: 3rd International Conference on Learning Representations, ICLR 2015 – Workshop Track Proceedings; 2015. P. 1–14.
- Sokolova M., Lapalme G. A systematic analysis of performance measures for classification tasks. Information Processing and Management. 2009;4(45):427–437. DOI: 10.1016/j.ipm.2009.03.002
- Ахметшин Р.И., Кирпичников А.П., Шлеймович М.П. Распознавание эмоций человека на изображениях // Вестник технологического университета. 2015. Т. 18, № 11. С. 160−163. [Akhmetshin R.I., Kirpichnikov A.P., Shleymovich M.P. [Recognizing human emotions from images]. Herald of technological university. 2015;18(11):160−163. (In Russ.)].
- Perkins R. Neural Networks Model Audience Reactions to Movies. Caltech: website. Available at: https://www.caltech.edu/about/news/neural-networks-model-audience-reactions-movies-79098 (accessed 15.02.2023).
- Affectiva: website. Available at: https://www.affectiva.com/success-story/flying-mollusk/ (accessed 15.12.2022).
- Talele A.K., Chourasia B. Student’s Emotions Identification Using CNN. International Journal of Advanced Research in Engineering and Technology (IJARET). 2020;11(11):1426–1434. DOI: 10.34218/IJARET.11.11.2020.130
- Кирпичников А.П., Ляшева С.А., Шлеймович М.П. Обнаружение и сопровождение людей в интеллектуальных детекторах внештатных ситуаций // Вестник Казанского технологического университета. 2014. Т. 17, № 21. С. 351–356. [Kirpichnikov A.P., Lyasheva S.А., Shleymovich М.P. [Detection and tracking of people in intelligent detectors of emergency situations]. Bulletin of Kazan Technological University. 2014;17(21):351–356. (In Russ.)]