Оценка антимикробной активности полиазолидинаммония, модифицированного гидрат-ионами йода, в зависимости от его физико-химических характеристик

Автор: Вакараева М.М., Ульянов В.Ю., Нечаева О.В., Лунева И.О., Тихомирова Е.И., Шаповал О.Г., Заярский Д.А.

Журнал: Саратовский научно-медицинский журнал @ssmj

Рубрика: Микробиология

Статья в выпуске: 3 т.11, 2015 года.

Бесплатный доступ

Цель: изучить антимикробную активность вариантов полимерного соединения полиазолидинаммония, модифицированного гидрат-ионами йода (ПААГ-М), в зависимости от длины полимерной цепи и концентрации гидрат-ионов йода в отношении стандартных штаммов грамотрицательных и грамположительных бактерий, а также микроскопических грибов. Материал и методы. Используя метод серийных разведений, определили показатели минимальной подавляющей концентрации в отношении исследуемых микроорганизмов для всех вариантов исследуемого полимерного соединения. Результаты. Установлена высокая чувствительность Esch-erichia coli 113-13 и Pseudomonas aeruginosa АТСС 27853 к вариантам ПААГ-М с молекулярной массой

Еще

Антимикробная активность, полиазолидинаммоний модифицированный гидратионами йода

Короткий адрес: https://sciup.org/14918130

IDR: 14918130

Текст научной статьи Оценка антимикробной активности полиазолидинаммония, модифицированного гидрат-ионами йода, в зависимости от его физико-химических характеристик

1 Введение. Множественная лекарственная устойчивость госпитальных штаммов условно-патогенных бактерий приобрела характер глобальной проблемы современной антимикробной терапии [1–3]. Поиск новых химиотерапевтических средств с антимикробной активностью по-прежнему сохраняет свою актуальность как одно из направлений ее решения [4, 5]. В последнее время ведется поиск высокоэффективных препаратов с антимикробными свойствами среди полимерных соединений, которые характеризуются низкой токсичностью и повышенной биодоступностью [6, 7]. Оценка антимикробных свойств полимера — полиазолидинаммония, модифицированного гидрат-ионами йода (ПААГ-М), относящегося к IV классу токсичности, показала широкий спектр его активности в отношении как стандартных, так и клинических штаммов грамположительных и грамо-трицательных бактерий, микроскопических грибов и некоторых вирусов [8, 9]. Однако для повышения эффективности антимикробного действия необходимо учитывать особенности биологии возбудителя, в том числе связанные со строением микробных клеток. Поэтому целью исследования явилось изучение антимикробных свойств модификаций ПААГ-М в зависимости о молекулярной массы полимерной цепи и концентрации гидрат-ионов йода в препарате.

Материал и методы. В исследованиях использовали различные варианты ПААГ-М, отличающиеся физико-химическими свойствами: длиной полимерной цепи (<100, 100–200, 200–350 и 400–500 кДа) и содержанием гидрат-ионов йода (таблица).

Модификации полимера ПААГ-М с различным содержанием гидрат-ионов йода

№ п/п

Лабораторный шифр варианта полимера

Содержание гидрат-ионов йода

1

ПААГ-М

6

6 мкг/мл

2

ПААГ-М

12,5

12,5 мкг/мл

3

ПААГ-М25

25 мкг/мл

4

ПААГ-М50

50 мкг/мл

Антимикробную активность исследуемых соединений изучали с использованием метода серийных разведений (МУК 4.2.1890–04.) с определением минимальной подавляющей концентрации (МПК) каждого варианта препарата [10] . Образцы исследуемых соединений разводили в стерильной дистиллированной воде до получения рабочей концентрации 1000 мкг/мл, а затем получали ряд последовательных двойных разведений в жидкой питательной среде. В качестве экспериментальных моделей использовали стандартные штаммы грамотрицательных и грампо-ложительных бактерий и микроскопических грибов музея кафедры микробиологии, вирусологии и иммунологии Саратовского государственного медицинского университета им. В. И. Разумовского: Escherichia

coli 113–13, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus 209 P, Candida albicans 13108

Результаты. Оценка антимикробной активности ПААГ-М в зависимости от длины полимерной цепи показала, что стандартные штаммы грамотрицатель-ных бактерий проявили высокую чувствительность к варианту полимера с наименьшей молекулярной массой (рис. 1). Так, для E. coli 113–13 значения МПК ПААГ-М6 с длиной полимерной цепи <100 кДА составили 16 мкг/мл, а с длиной полимерной цепи 100– 200 кДА — 32 мкг/мл. Для P. aeruginosa АТСС 27853 значения МПК данных вариантов полимера составили 32 мкг/мл в обоих случаях. Увеличение молекулярной массы полимера приводило к снижению его антимикробной активности в отношении грамотрица-тельных бактерий.

Рис. 1. Зависимость биологической активности ПААГ-М от длины полимерной цепи

Стандартный штамм S. aureus 209P проявил большую чувствительность к варианту полимера с молекулярной массой 200–350 и 400–500 кДа, для которых значения МПК составили 16 и 32 мкг/мл соответственно.

Увеличение концентрации гидрат-ионов йода в составе полимера приводило к повышению эффективности антимикробного действия всех вариантов ПААГ-М, что выражалось в снижении показателей МПК (рис. 2). Однако общая тенденция избирательного характера действия на грамположительные и грамотрицательные бактерии в зависимости от величины молекулярной массы сохранялась для всех вариантов полимера.

АТСС 27853

Рис. 2. Зависимость антимикробной активности ПААГ-М от концентрации гидрат-ионов йода

Наименьшая эффективность полимерного соединения ПААГ-М была отмечена в отношении стан- дартного штамма микроскопических грибов C. albicans 13108. В ходе проведенного исследования нам не удалось установить зависимость противогрибковой активности ПААГ-М от длины полимерной цепи: варианты полимера ПААГ-М6 и ПААГ-М125 не обладали противогрибковой активностью даж, е при использовании самых высоких рабочих концентраций препаратов.

Однако показано, что противогрибковая активность ПААГ-М зависела от концентрации гидрат-ио-нов йода в составе препарата: ПААГ-М6 и ПААГ-М125 не проявили антимикробной активности в отношении, C. albicans 13108, повышение концентрации гидрат-ионов йода до 25 и 50 мкг/мл в составе препаратов ПААГ-М25 и ПААГ-М50 приводило к появлению противогрибковой активности исследуемых препаратов, хотя значения МПК были достаточно высокими и составили 500 и 250 мкг/мл соответственно.

Обсуждение. Большая эффективность вариантов полимера с низкой молекулярной массой в отношении грамотрицательных бактерий связана с особенностями строения их клеточной стенки. Единственным местом проникновения в клетку различных веществ являются пориновые каналы, представляющие собой систему интегральных белков, через которые способны проходить химические соединения только с определенной молекулярной массой и пространственной организацией. Сильное дестабилизирующее действие на мембраны клеток оказывают низкомолекулярные катионные поверхностно-активные вещества (ПАВ), к которым относятся варианты ПААГ-М с молекулярной массой <100 и 100–200 кДа.

Для грамположительных бактерий важнейшим условием взаимодействия соединений с микробной клеткой является способность функционально активных групп к межмолекулярной ассоциации с компонентами клеточной стенки. В составе исследуемых вариантов ПААГ-М основным действующим компонентом являются гидрат-ионы йода.

Заключение. Полученные результаты позволяют осуществлять выбор наиболее эффективных препаратов, характеризующихся антимикробной активностью, с заданными физико-химическими характеристиками, что обеспечит большую избирательность их действия в отношении возбудителей инфекционных заболеваний с учетом особенностей их биологических свойств.

Список литературы Оценка антимикробной активности полиазолидинаммония, модифицированного гидрат-ионами йода, в зависимости от его физико-химических характеристик

  • Козлов P.С. Клиническое значение резистентности грамположительных бактерий. Инфекции в хирургии 2009; 7 (1): 3-10
  • Решедько Г.К., Рябкова Е.Л., Кречикова О.И. и др. Антибиотикорезистентность грамотрицательных возбудителей нозокомиальных в отделениях реанимации и интенсивной терапии России. Клин Микробиол Антимикроб Химиотер 2008; 10 (2): 96-112
  • Gloede J, Scheerans C, Derendorf Н, et al. In vitro pharma-codynamic models to determine the effect of antibacterial drugs. Journal of Antimicrobial Chemotherapy 2010; 65 (2): 186-201
  • Гольцева E.B. Механизмы возникновения и пути преодоления резистентности у различных лекарственных препаратов. Вопросы биологической, медицинской и фармацевтической химии 2013; (6): 7-9
  • Нечаева О.В., Тихомирова Е.И., Шуршалова Н.Ф. и др. Перспективы использования гетероциклических соединений в медико-биологической практике. Саратов, 2013; 120 с.
  • Серебренникова E.C., Давыдова В.Л., Турина С. В. и др. Изучение антимикробной активности некоторых производных альгиновой кислоты. Проблемы медицинской микологии 2013; (4): 60-62
  • Shtilman Ml. Polymers in the drug systems. Rus J Bio-pharm.2009; 1 (2): 5-14
  • Нечаева О.В., Тихомирова Е.И., Заярский Д. А. и др. Антимикробная активность полиазолидинаммония, модифицированного гидрат-ионами йода. Журнал микробиологии, эпидемиологии, иммунобиологии 2015; (3): 88-92
  • Нечаева О.В., Ульянов В.Ю., Заярский Д.А. и др. Влияние биосовместимого полимерного соединения на выживаемость возбудителей инвазивных микозов. Проблемы медицинской микологии 2014; 6 (2): 106
  • Определение чувствительности микроорганизмов к антибатериальным препаратам. МУК 4.2.1890-04. М.: Издательский отдел Федерального центра Госсанэпиднадзора Минздрава РФ, 2004; 91 с.
Еще
Статья научная