Оценка биологической безопасности графеновых наноструктур in vivo : обзор литературы

Автор: Раскоша О.В., Старобор Н.Н., Башлыкова Л.А.

Журнал: Известия Коми научного центра УрО РАН @izvestia-komisc

Статья в выпуске: 5 (51), 2021 года.

Бесплатный доступ

Наноматериалы на основе графена обладают уникальными физико-химическими свойствами, подходящими для различных приложений в электронике, телекоммуникациях, энергетике, биологии и медицине. Необходимым этапом исследований, посвященных возможности практического использования графеновых наноструктур, является оценка их токсического воздействия и биологической совместимости. В статье представлен обзор литературы по изучению биологической безопасности наноматериалов на основе графена с использованием модельных систем in vivo. Сделан вывод о необходимости более подробного изучения токсичности наноматериалов на основе графена с обязательным выявлением связи между их характеристикой и биологической эффективностью.

Еще

Графеновые наноматериалы, in vivo, токсичность, биологическая эффективность

Короткий адрес: https://sciup.org/149139323

IDR: 149139323   |   DOI: 10.19110/1994-5655-2021-5-35-45

Список литературы Оценка биологической безопасности графеновых наноструктур in vivo : обзор литературы

  • Electric field effect in atomically thin carbon films / K.S. Novoselov, A.K. Geim, S.V. Moro-zov, D. Jiang, Zhang Y., S.V. Dubonos, I.V. Grigorieva, AA. Firsov // Science. 2004. Vol. 306. P. 666-669. DOI: 10.1126/science. 110 2896
  • Graphene and graphene oxide: synthesis, properties, and applications / Y. Zhu, S. Murali, W. Cai, X.Li, J.W. Suk, J.R. Potts, RS. Ruoff // Advanced materials. 2010. Vol. 22. No. 35. P. 3903-3958. DOI: 10.1002/adma.201001068
  • Graphene oxide induces dose-dependent lung injury in rats by regulating autophagy / L. Zhang, S. Ouyang, H. Zhang, M. Qiu, Y. Dai, S. Wang, Y. Wang, J.Ou // Experimental and therapeutic medicine. 2021. Vol. 462. P. 1-11. DOI: 10.3892/etm.2021.9893
  • Feng L., Wu L., Qu X. New Horizons for Diagnostics and Therapeutic Applications of Graphene and Graphene Oxide // Advanced Materials. 2013. Vol. 25. P. 168-186. DOI: 10. 1002/adma.201203229
  • Zhang X., Liang Т., Ma Q. Layer-by-layer assembled nano-drug delivery systems for cancer treatment. Drug Delivery. 2021. Vol. 28(1). P. 655-69. DOI: 10.1080/10717544.2021.1905 748.
  • Graphene in mice: ultrahigh in vivo Tumor uptake and efficient photothermal therapy / K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, Z. Liu // Nano Lett. 2010. Vol. 10 (9). P. 3318-3323. DOI: 10.1021/nll00996u
  • X-ray-induced nanoparticle-based photody-namic therapy of cancer / X. Zou, M. Yao, L. Ma, M. Hossu, X. Han, P. Juzenas, W. Chen // Nanomedicine. 2014. Vol. 9 (15). P. 2339-2351. DOI: 10.2217/nnm.l3.198
  • Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment / L. Liu, Q. Ma, J. Cao, Y. Gao, S. Han, Y. Liang, Т. Zhang, Y. Song & Yong et al. // Cancer Nano. 2021. Vol. 12 (18). DOI: 10.1186/sl2645-021-00087-7
  • Langer R., Vacanti J. Advances in tissue engineering // J. of Pediatric Surgery. 2016. Vol. 51(1). P. 8-12. DOI: 10.1016/j.jpedsurg. 2015.10.022
  • Graphene-Based Interfaces Do Not Alter Target Nerve Cells / A. Fabbro, D. Scaini, V. León, E. Vázquez, G. Cellot, G. Privitera et al. // ACS Nano. 2016. Vol. 10. No. 1. P. 615-623. DOI: 10.1021/acsnano.5B05647
  • High-resolution mapping of infraslow cortical brain activity enabled by graphene micro-tran-sistors / E. Masvidal-Codina, X. Illa, M. Dasil-va et al. // Nature Mater. 2019. Vol. 18. P. 280-288. DOI: 10.1038/s41563-018-0249-4
  • Аксенова Е.И., Камынина H.H., Маклакова ЮА. Биосенсорные системы в медицине: экспертный обзор. М.: ГБУ «НИИОЗММ ДЗМ», 2020. 20 с. Aksenova E.I., Kamynina N.N., Maklakova YuA. Biosensornie sistemy v medicine: eks-pertnii obzor [Biosensory systems in medicine: an expert review]. Moscow: Res. Inst, of Healthcare Organization and Medical Management of the Moscow Dept. of Healthcare, 2020. 20 p.
  • Graphene oxide/hydroxyapatite composite coatings fabricated by electrochemical deposition / Y. Zeng, X. Pei, S. Yang, H. Qin, H. Cai, S. Ни, L. Sui, Q. Wan, J. Wang // Surface and Coatings Technology. 2016. Vol. 286. P. 72-79. DOI: 10.1016/j.surfcoat. 2015. 12.013
  • Reduced Graphene Oxide Incorporated GelMA Hydrogel Promotes Angiogenesis For Wound Healing Applications / S.R.U. Rehman, R. Augustine, AA. Zahid, R. Ahmed, M. Tariq, A Hasan II Int. J. of Nanomedicine. 2019. Vol. 14. P. 9603-9617. DOI: 10.2147/IJN.S218120
  • Bianco A. Graphene: Safe or Toxic? The Two Faces of the Medal // Angewandte Chemie International Edition. 2013. Vol. 52. P. 4986-4997. DOI: 10.1002/anie.201209099
  • К rug H.F. Nanosafety Research - Are We on the Right Track? / Angewandte Chemie International Edition. 2014. Vol. 53. P. 12304-12319. DOI: 10.1002/anie.201403367
  • Максимова P.M., Бурдов В А. Квантовая механика графена. Нижний Новгород: Нижегородский госуниверситет, 2019. 37 с. Maksimova G.M., Burdov VA. Kvantovaya mehanika grafena [Quantum mechanics of graphene]. Nizhni Novgorod: N.Novgorod State Univ., 2019. 37 p.
  • Thermal Properties of PEG/Graphene Nano-platelets (GNPs) Composite Phase Change Materials with Enhanced Thermal Conductivity and Photo-Thermal Performance / H. Wang, H. Zhu, Y. Gu, X. Li, X. Mao // Applied Sciences. 2018. Vol. 8. P. 2613 (1-14). DOI: 10.3390/app8122613
  • Surface engineering of graphene-based nanomaterials for biomedical applications / S. Shi, F. Chen, E.B. Ehlerding, W. Cai // Bioconjug chemistry. 2014. Vol. 25. P. 1609-1619. DOI: 10. 1021/bc500332c
  • Kim J., Gurunathan S. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials // Int. J. of Nanomedicine. 2016. Vol. 11. P. 1927-1945. DOI: 10.2147/IJN.S105264
  • Graphene and graphene oxide as nanomaterials for medicine and biology application / 5. Priyadarsini, S. Mohanty, S. Muk-herjee, S. Basu, M. Mishra // J. of Nanostructure in Chemistry. 2018. Vol. 8. P. 123-137. DOI: 10. 1007/s40097-018-0265-6
  • Toktam N.. Cousins B.G., Seifalian AM. Toxicology of chemically modified graphene-based materials for medical application // Archives of toxicology. 2014. Vol. 88. P. 1987-2012. DOI: 10.1007/s00204-014-l 361-0
  • Recent advances in graphene-based nanomaterials: properties, toxicity and applications in chemistry, biology and medicine / J. Yao, H. Wang, M. Chen, Yang // Microchim Acta. 2019. Vol. 186. P. 395 (1-25). DOI: 10.1007/ s00604-019-3458-x
  • Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment / B. Fadeel, C. Bussy, S. Merino, E. Vázquez, E. Flahaut, F. Mouchet et al. // ACS Nano. 2018. Vol. 12. P. 10582-10620. DOI: 10.1021/acsnano.8b04758
  • Liao C., Li Y., Tjong S.C. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity // Int. J. of Molecular Sciences. 2018. Vol. 19. P. 35-64. DOI: 10.3390/ijmsl9113 564
  • Toxicology of graphene-based nanomaterials / G. Lalwani, M. D'Agati, A. M. Khan, B. Sitharaman // Advanced Drug Delivery Reviews. 2016. Vol. 105 (Pt B). P. 109-144. DOI: 10.1016/j.addr.2016.04.028
  • Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms / L. Ou, B. Song, H. Lianh, J. Liu, X. Feng, B. Deng, T. Sun, L. Shoo // Part. Fibre Toxicol. 2016. Vol. 13. P. 57 (1-24). DOI 10.1186/ si 2989-016-0168-y
  • Biocompatibility of graphene oxide / K. Wang, J. Rúan, H. Song, J. Zhang, Y. Wo, S. Guo, D. Cu // Nanoscale Research Letters. 2011. Vol. 6. P. 8 (1-8). DOI: 10.1007/sl 1671-010-9751-6
  • The use of polyethylenimine-modified gra-phe-ne oxide as a nanocarrier for transferring hydrophobic nanocrystals into water to produce water-dispersible hybrids for use in drug delivery / L. Yan, Y.-N. Chang, L. Zhao, Z. Gu, X. Liu et al. 11 Carbon. 2013. Vol. 57. P. 120-129. DOI: org/10.1016/j.carbon.2013. 01.042
  • Dose ranging, expanded acute toxicity and safety pharmacology studies for intravenously administered functionalized graphene nano-particle formulations / S. Kanakia, J.D. Tous-saint, S.M. Chowdhury, T. Tembulkar, S. Lee, Y.-P. Jiang R. Z Lin, KR. Shroyer, W. Moore, B. Sitharaman // Biomaterials. 2014. Vol. 35. P. 7022-7031. DOI: 10.1016/ j.biomaterials. 2014.04.066
  • Influence of Polyethylene Glycol Coating on Biodistribution and Toxicity of Nanoscale Graphene Oxide in Mice after Intravenous Injection / B. Li, X. Zhang, J. Yang, Y. Zhang, W. Li, C. Fan, Q. Huang // Int. J. of Nanomedicine. 2014. Vol. 9. P. 4697-4707. DOI: 10.2147/IJN.S66591
  • In Vivo Pharmacokinetics, Long-Term Biodistribution, and Toxicology of PEGylated Graphene in Mice / K. Yang, J. Wan, S. Zhang, Y. Zhang, S.-T. Lee, Z.Liu // ACS Nano. 2011. Vol. 5. P. 516-522. DOI: 10.1021/nnl024303
  • Assessing in vivo toxicity of graphene materials: current methods and future outlook / Y. Ma, H. Shen, X. Tu, Z. Zhang // Nanomedicine. 2014. Vol. 9. No. 10. P. 1565-1580. h DOI: 10.2217/nnm.l4.68
  • Nanotoxicity of graphene and graphene oxide / A.B. Seabra, A.J. Paula, R. de Lima, O.L. Alves, N. Duran // Chemical Research in Toxicology. 2014. Vol. 27. No. 2. P. 159-168. DOI: 10.1021/tx400385x
  • Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge / V. Stone, M.R. Miller, M.J.D. Cli-ft, A. Elder, N.L. Mills, P. M0ller et al. // Environmental Health Perspectives. 2017. Vol. 125. P. 106002-1-106002-17. DOI: 10.1289/ EHP42
  • Minimizing Oxidation and Stable Nanoscale Dispersion Improves the Biocompatibility of Graphene in the Lung / M.C. Duch, G.R.S. Budinger, Y.T. Liang, S. Soberanes, D. Urich, S.E. Chiarella, LA. Campochiaro et al. // Nano Letters. 2011. Vol. 11. P. 5201-5207. DOI: 10.1021/nl202515a
  • Thrombus Inducing Property of Atomically Thin Graphene Oxide Sheets / S.K. Singh, M.K. Singh, M.K. Nay ah, S. Kumari, S. Shri-vastava, J.J A. Gracio, D. Dash // ACS Nano. 2011. Vol. 5. P. 4987-4996. DOI: 10.1021/ nn201092p
  • Biodistribution and pulmonary toxicity of in-tratracheally instilled graphene oxide in mice / Li, J. Yang, Q. Huang, Y. Zhang, C. Peng, Y. Zhang, Y. He, J. Shi, W. Li, J. Hu // NPG Asia Materials, 2013. Vol. 5 (4). e44. DOI: 10.1038/am.2013.7
  • Acute Oral Administration of Single-Walled Carbon Nanotubes Increases Intestinal Permeability and Inflammatory Responses: Association with the Changes in Gut Microbiota in Mice / H. Chen, R. Zhao, B. Wang, L. Zheng, H. Ouyang, H. Wang et al. // Advanced healthcare materials. 2018. Vol. 7. P. 1701313 (1-14). DOI: 10.1002/adhm.201701313
  • Thrombus inducing property of atomically thin graphene oxide sheets / S.K. Singh, M.K. Singh, M.K. Nayak, S. Kumari, S. Shriva-stava, J.J. Gracio, D. Dash // ACS Nano, 2011. Vol. 5 (6). P. 4987-4996.
  • Wang T., Zhu S., Jiang X. Toxicity mechanism of graphene oxide and nitrogen-doped graphene quantum dots in RBCs revealed by surface-enhanced infrared absorption spectroscopy // Toxicology Reports. 2015. Vol. 4 (4). P. 885-894. DOI: 10.1039/c4tx00138a
  • Synthesis and cyto-genotoxicity evaluation of graphene on mice spermatogonial stem cells / E. Hashemi, O. Akhavan, M. Shamsara, M. Daliri, M. Dashtizad, A Farmany // Colloids and Surfaces B: Biointerfaces. 2016. Vol. 146. P. 770-776. DOI: 10.1016/j.colsurfb.2016. 07.019
  • Cyto and genotoxicities of graphene oxide and reduced graphene oxide sheets on spermatozoa / E. Hashemi, O. Akhavan, M. Shamsara, R. Rahighi, A. Esfandiar, A.R. Tayefeh // RSC Advances. 2014. (4). P. 27213-27223. DOI: 10.1039/c4ra01047g
  • Systematic evaluation of graphene quantum dot toxicity to male mouse sexual behaviors, reproductive and offspring health / D. Zhang, Z. Zhang, Y. Wu, K. Fu, Y. Chen, W. Li, M. Chu // Biomaterials. 2019. Vol. 194. P. 215-232. DOI: 10.1016/j.biomaterials.2018.12.001
  • Xu S., Zhang Z., Chu M. Long-term toxicity of reduced graphene oxide nanosheets: Effects on female mouse reproductive ability and offspring development // Biomaterials. 2015. Vol. 54. P. 188-200. DOI: 10.1016/j .biomaterials.2015.03.015
  • Effects of Graphene Oxide on the Development of Offspring Mice in Lactation Period / C. Fu, T. Liu, L. Li, H. Liu, Q. Liang, X. Meng // Biomaterials. 2015. Vol. 40. P. 23-31. DOI: 10.1016/j.biomaterials.2014.11.014
  • Graphene Family Nanomaterials in Ocular Applications: Physicochemical Properties and Toxicity / S. Borandeh, V. Alimardani, S.S. Abolmaali, J. Seppala // Chemical Research in Toxicology. 2021. pubs.acs.org/crt P. A-Q. DOI: 10.1021/acs.chemrestox. 0c00340
  • Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity Using Human Keratinocyte Cells / AA Shvedova, V. Castranova, E.R. Kisin, D. Schwegler-Berry, A.R. Murray, V.Z. Gandelsman, A. Maynard, P. Baron // J. of Toxicology and Environmental Health (Part A). 2003. Vol. 66. P. 1909-1926. DOI: 10.1080/713853956
  • T Lymphocytes Dominate Local Leukocyte Infiltration in Response to Intradermal Injection of Functionalized Graphene-Based Nanomate-rial / G.F. Erf, D.M. Falcon, K.S. Sulli van, S.E. Bourdo II J. of Applied Toxicology. 2017. Vol. 37. P. 1317-1324. DOI: 10.1002/jat. 3492
  • Synergistic antibacterial actions of graphene oxide and antibiotics towards bacteria and the toxicological effects of graphene oxide on human epidermal keratinocytes / T. Pulingam, K.L. Thong, J.N. Appaturi, N.I. Nordin., J.D. Ignatius, W.L. Chin, F.L. Bey // European J. of pharmaceutical sciences. 2020. Vol. 142. P. 1-10. DOI: 10.1016/j.ejps.2019.105087
  • Mytych J., Wnuk M. Nanoparticle technology as a double-edged sword: cytotoxic, genotoxic and epigenetic effects on living cells // J. Biomater. Nanobiotechnol. 2013. Vol. 4. No. 1. P. 53-63. DOI: 10.4236/jbnb.2013.41008
  • Degradation of mitochondria and oxidative stress as the main mechanism of toxicity of pristine graphene on U87 glioblastoma cells and tumors and HS-5 cells / S. Jaworski, B. Strojny, E. Sawosz, M. Wierzbicki, M. Grodzik, M. Kutwin, K. Daniluk, A. Chwalibog // J. of Biomaterials and Nanobiotechnology. 2019. Vol. 20. P. 650-667. DOI: 10.3390/ijms200 30650
  • Reduced graphene oxide induces transient blood-brain barrier opening: An in vivo study / M.C. Mendonca, E.S. Soares, M.B. de Jesus, H.J. Ceragioli, M.S. Ferreira, RR Catharine, MA. Cruz-Höfling II J. Nanobiotechnol. 2015. Vol. 13. P. 78. DOI 10.1186/sl2951-015-0143-z
  • Oxidative damage in the kidney and brain of mice induced by different nanomaterials / S. Shang, S.Y. Yang, Z.M. Liu, X. Yang // Front. Biol. 2015. Vol. 10. P. 91-96. DOI: 10.1007/ si1515-015-1345-3
  • Toxic potential of materials at the nanolevel / A. Nel, T. Xia, L. Mädler, N. Li // Science. 2006. Vol. 311. P. 622-627. DOI: 10.1126/sci-ence.1114397
  • Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism / W. Zhang, C. Wang, Z. Li, Z. Lu, Y. Li, J.J. Yin et al. II Advanced Materials. 2012. Vol. 24. P. 5391-5397. DOI: 10.1002/adma.20 1202678
  • Toxicity of Nanoparticles on the Reproductive System in Animal Models: A Review / R.D. Brohi, L. Wang, H.S. Talpur, D. Wu, FA. Khan, D. Bhattarai, Z.U. Rehman, F. Farma-nullah, L.J. Huo // Frontiers in Pharmacology. 2017. Vol. 8. P. 606. DOI: 10.3389/ fphar.2017.00606
  • Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology / Y. Qiu, Z. Wang, A.C.E. Owens, I. Kulaots, Y. Chen, AB. Kane, R.H. Hurt // Nanoscale. 2014. Vol. 6 P. 11744-11755. DOI: 10.1039/c4nr03275f
  • Кудряшов Ю.Б. Радиационная биофизика (ионизирующие излучения) / Под ред. В.К. Мазурика, М.Ф. Ломанова. М.: ФИЗМАТ-ЛИТ, 2004. 448 с. Kudryashov Yu.B. Radiacionnaya biofizika (ioniziruyuschie izlucjeniya) [Radiation biophysics (ionizing radiation)] / Ed. V.K. Mazu-rik, M.F. Lomanov. Moscow: FIZMATLIT, 2004. 448 p.
  • Gudkov S.V., Popova N.R., Bruskov V.l. Radioprotective substances: history, trends and prospects 11 Biophysics. 2015. Vol. 60. No. 4. P. 659-667. DOI: 10.1134/S0006350 9150 40120
  • Reducing X-Ray Induced Oxidative Damages in Fibroblasts with Graphene Oxide / Y. Qiao, P. Zhang, C. Wang, L. Ma, M. Su // Nanoma-terials (Basel). 2014. Vol. 4. P. 522-534. DOI: 10.3390/nano4020522
  • Clinically Approved Carbon Nanoparticles with Oral Administration for Intestinal Radi-oprotection via Protecting the Small Intestinal Crypt Stem Cells and Maintaining the Balance of Intestinal Flora / C. Wang, J. Xie, X. Dong, L. Mei, M. Zhao, Z. Leng, H. Hu, L. Li, Z. Gu, Y. Zhao // Nano Micro Small. 2020. Vol. 16. P. 1-14. DOI: 10.1002/smll.201906 915
  • Monte Carlo-based calculation of nano-scale dose enhancement factor and relative biological effectiveness in using different nanoparticles as a radiosensitizer / M. Robatjazi, H.R. Baghani, A. Rostami, A. Pashazadeh // Int. J. of Radiation Biology. 2021. DOI: 10.1080/09 553002.2021.1934748
Еще
Статья научная