Оценка эффективности алгоритма поддержки принятия решения врачом при дистрофии сетчатки с использованием методов машинного обучения

Автор: Жданов Алексей Евгеньевич, Долганов Антон Юрьевич, Занка Дарио, Борисов Василий Ильич, Лучиан Евдочим, Доросинский Леонид Григорьевич

Журнал: Компьютерная оптика @computer-optics

Рубрика: Обработка изображений, распознавание образов

Статья в выпуске: 2 т.47, 2023 года.

Бесплатный доступ

Электроретинография является перспективным методом электрофизиологического тестирования, позволяющего диагностировать заболевания, связанные с нарушениями сосудистых структур сетчатки зрительного анализатора. Классический анализ электроретинограммы строится на оценке 4 параметров в амплитудно-временном представлении и часто нуждается в конкретизации с использованием альтернативных методов диагностики. В настоящем исследовании предлагается использование оригинального алгоритма поддержки принятия решения врачом для диагностирования дистрофии сетчатки. Алгоритм построен на базе методов машинного обучения и использует параметры, извлеченные из вейвлет-скалограммы педиатрических и взрослых сигналов электроретинограмм. Также в исследовании используется размеченная база данных педиатрических и взрослых сигналов электроретинограмм, записанная с помощью компьютеризированной электрофизиологической рабочей станции EP-1000 (Tomey GmbH) в Екатеринбургском центре МНТК «Микрохирургия глаза». Научная новизна настоящего исследования заключается в разработке специального алгоритмического обеспечения для анализа процедуры извлечения параметров из вейвлет-скалограммы сигнала электроретинограммы с использованием функции cwt библиотеки PyWT, где в качестве базисной функции был выбран вейвлет Гаусса 8-го порядка. Также научная новизна заключается в разработке алгоритма анализа сигналов электроретинограмм, который в сравнении с классическим анализом реализует классификацию взрослых сигналов электроретинограммы на 19 % точнее, а педиатрических сигналов на 20 % точнее, чем классический анализ.

Еще

Электроретинография, электроретинограмма, эрг, электрофизиологическое исследование, эфи, дистрофия сетчатки, вейвлет-анализ, вейвлет-скалограмма, деревья решений, алгоритм поддержки принятия решения

Короткий адрес: https://sciup.org/140297691

IDR: 140297691   |   DOI: 10.18287/2412-6179-CO-1124

Список литературы Оценка эффективности алгоритма поддержки принятия решения врачом при дистрофии сетчатки с использованием методов машинного обучения

  • Gonzales-Turin JM, et al. Relationship between self-reported visual impairment and worsening frailty transition states in older people: a longitudinal study. Aging Clin Exp Res 2021; 33(9): 2491-2498. DOI: 10.1007/s40520-020-01768-w.
  • Iodice F, Cassano V, Rossini PM. Direct and indirect neurological, cognitive, and behavioral effects of COVID-19 on the healthy elderly, mild-cognitive-impairment, and Alzheimer's disease populations. Neurol Sci 2021; 42(2): 455-465. DOI: 10.1007/s10072-020-04902-8.
  • Van Schijndel NH, et al. The inverse problem in electro-retinography: a study based on skin potentials and a realistic geometry model. IEEE. Trans Biomed Eng 1997; 44(2): 209-211. DOI: 10.1109/TBME.2021.3075617.
  • Jonnal RS. Toward a clinical optoretinogram: a review of noninvasive, optical tests of retinal neural function. Ann Transl Med 2021; 9(15): 1270. DOI: 10.21037/atm-20-6440.
  • Gauvin M, Little JM, Lina JM, Lachapelle P. Functional decomposition of the human ERG based on the discrete wavelet transform. Journal of vision 2015; 15(16): 14-14. DOI: 10.1167/15.16.14.
  • Gauvin M, et al. Functional decomposition of the human ERG based on the discrete wavelet transform. J Vis 2015; 15(16): 14. DOI: 10.1167/15.16.14.
  • Schroder P, et al. A minimal-model approach to analyze neuronal circuit dynamics from multifocal ERG (mERG). 2019 41st Annual Int Conf of the IEEE Engineering in Medicine and Biology Society (EMBC) 2019: 2955-2958. DOI: 10.1109/EMBC.2019.8856840.
  • Varadharajan S, Fitzgerald K, Lakshminarayanan V. Wavelet analysis of ERG of patients with Duchenne Muscular Dystrophy. Vision Science and its Application, OSA Technical Digest 2000: 65-68.
  • Gauvin M, Lina JM, Lachapelle P. Advance in ERG analysis: from peak time and amplitude to frequency, power, and energy. BioMed Res Int 2014; 2014: 246096. DOI: 10.1155/2014/246096.
  • Zhdanov AE, et al. OculusGraphy: Norms for electro-retinogram signals. 2021 IEEE 22nd Int Conf of Young Professionals in Electron Devices and Materials (EDM) 2021: 399-402. DOI: 10.1109/EDM52169.2021.9507597.
  • Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 1979; 9(1): 62-66. DOI: 10.1109/TSMC.1979.4310076.
  • Abbasi H, et al. 2D wavelet scalogram training of deep convolutional neural network for automatic identification of micro-scale sharp wave biomarkers in the hypoxic-ischemic EEG of preterm sheep. 2019 41st Annual Int Conf of the IEEE Engineering in Medicine and Biology Society (EMBC) 2019: 1825-1828. DOI: 10.1109/EMBC.2019.8857665.
  • Shamshinova AM, Volkov VV. Functional methods of research in ophthalmology. Publishing House Medicine; 2004.
  • McCulloch DL, et al. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 2015; 130(1): 1-12. DOI: 10.1007/s10633-014-9473-7.
  • Lior R. Data mining with decision trees: theory and applications. World Scientific; 2014.
  • Pedregosa F, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res 2011; 12: 2825-2830.
Еще
Статья научная