Оценка радиационной обстановки в районе расположения АО "ГНЦ НИИАР" до начала эксплуатации ИЯУ МБИР. Часть 1. Наземные экосистемы

Автор: Панов А.В., Исамов Н.Н., Кузнецов В.К., Цыгвинцев П.Н., Гешель И.В.

Журнал: Радиация и риск (Бюллетень Национального радиационно-эпидемиологического регистра) @radiation-and-risk

Рубрика: Научные статьи

Статья в выпуске: 2 т.31, 2022 года.

Бесплатный доступ

Представлен анализ результатов радиационного обследования наземных (природных и аграрных) экосистем в 30-км зоне вокруг АО «ГНЦ - Научно-исследовательский институт атомных реакторов» (АО «ГНЦ НИИАР») до ввода в эксплуатацию многоцелевого реактора на быстрых нейтронах (ИЯУ МБИР). Показано, что за счёт многолетних выбросов в результате работы АО «ГНЦ НИИАР» произошло поступление в окружающую среду преимущественно 137Cs, однако большая часть активности радионуклида не вышла за границы санитарно-защитной зоны предприятия. Так, в 2011 г. средняя плотность загрязнения 137Cs почвы в санитарно-защитной зоне (0-5 км) составила 11,1±6,5, в зоне наблюдения (5-12,5 км) - 3,1±2,3, в зоне влияния (12,5-30 км) - 1,3±0,4 кБк/м2. Соотношение 137Cs/90Sr в почвенном покрове санитарно-защитной зоны максимально - 24,5±19,4, в зоне наблюдения - 8,2±6,8, в зоне влияния близко к уровню глобальных выпадений - 2,0±0,5. В лесных и луговых ценозах более 90% 137Cs депонируется в 0-5 сантиметровом слое почвы, на заболоченных участках на глубине до 20 см. Максимальное накопление 137Cs в компонентах экосистем отмечено в растительности санитарно-защитной зоны АО «ГНЦ НИИАР» и, в большей степени, в опаде леса. Показано, что в санитарно-защитной зоне в результате сбросов технологических вод в начальный период работы предприятия сформировался участок локального радиоактивного загрязнения площадью 0,12 км2 с повышенными активностями в грунтах 137Cs, 90Sr и 239,240Pu. За последние 15 лет (2005-2020 гг.) в зонах наблюдения и влияния АО «ГНЦ НИИАР» плотности загрязнения 137Cs и 90Sr почвенного покрова снижаются в соответствии с законами распада радионуклидов, что говорит об отсутствии значимых выбросов института. Содержание техногенных радионуклидов в сельскохозяйственной и пищевой продукции местного производства полностью отвечает установленным радиологическим стандартам с большими коэффициентами запаса и не оказывает значимого влияния на дополнительное облучение населения района размещения АО «ГНЦ НИИАР». Для оценки воздействия на окружающую среду деятельности института и анализа радиационной безопасности ИЯУ МБИР после ввода реактора в эксплуатацию дан прогноз до 2080 г. уровней загрязнения 137Cs и 90Sr почв наземных экосистем в пределах 30 км вокруг АО «ГНЦ НИИАР».

Еще

Радиационная безопасность, радиационное обследование, природные экосистемы, аграрные экосистемы, естественные и техногенные радионуклиды, почва, растения, плотность загрязнения, сельскохозяйственная продукция

Короткий адрес: https://sciup.org/170195065

IDR: 170195065   |   DOI: 10.21870/0131-3878-2022-31-2-36-47

Текст научной статьи Оценка радиационной обстановки в районе расположения АО "ГНЦ НИИАР" до начала эксплуатации ИЯУ МБИР. Часть 1. Наземные экосистемы

Перспективы развития атомной энергетики определяются как решением вопросов обеспечения радиационной безопасности АЭС, так и созданием новых технологий, направленных на замыкание ядерного топливного цикла [1]. Разработка инновационных реакторов на быстрых нейтронах и их совместная работа с широко используемыми тепловыми энергоблоками позволит добиться в атомной энергетике «радиационной эквивалентности», т.е. снижения образования высокотоксичных радиоактивных отходов, а также решить будущую проблему обеспечения АЭС урановым топливом и последовательно утилизировать накопленные ядерные материалы военного назначения [2]. Для достижения этих важнейших экологических целей ведётся активная работа в нескольких направлениях. Уже созданы и успешно эксплуатируются на Белоярской АЭС

Панов А.В.* – гл. науч. сотр., д.б.н., проф. РАН; Исамов Н.Н. – вед. науч. сотр., к.б.н.; Кузнецов В.К. – гл. науч. сотр., д.б.н.;

Цыгвинцев П.Н. – вед. науч. сотр., к.б.н.; Гешель И.В. – науч. сотр. ФГБНУ ВНИИРАЭ.

промышленные реакторы на быстрых нейтронах (БН-600 и БН-800) [3]. На БН-800 к настоящему времени отработана технология использования уран-плутониевого МОКС-топлива. Вблизи Сибирского химического комбината (СХК) строится опытно-демонстрационный энергокомплекс (ОДЭК) с реактором на быстрых нейтронах БРЕСТ-ОД-300, предприятием по фабрикации и переработки ядерного топлива [2]. На ОДЭК будет отрабатываться технология полного замыкания ядерного топливного цикла. На территории Научно-исследовательского института атомных реакторов (АО «ГНЦ НИИАР») возводится многоцелевой исследовательский ядерный реактор на быстрых нейтронах (ИЯУ МБИР), который является на сегодня самым крупным в мире. На нём планируются международные научные исследования по разработке и испытаниям новых видов материалов, топлива, радиоизотопов и теплоносителей для обоснования двухкомпонентной атомной энергетики также с целью замыкания ядерного топливного цикла [4, 5]. В 2021 г. начата активная фаза строительно-монтажных работ ИЯУ МБИР, а начало эксплуатации реактора запланировано на 2028 г.

Согласно основополагающим международным документам в области обеспечения радиационной безопасности [6], при эксплуатации существующих и строительстве новых радиационноопасных объектов необходимо доказать отсутствие их негативного влияния на человека и окружающую среду. В районе расположения Белоярской АЭС с наиболее крупным в мире промышленным реактором на быстрых нейтронах БН-800 проведены радиоэкологические исследования такого рода для наземных природных [7] и аграрных экосистем [8]. Мониторинг радиационной обстановки в 30-км зоне вокруг атомной станции до и после начала промышленной эксплуатации БН-800 показал отсутствие значимого влияния нового реактора на поступление техногенных радионуклидов (прежде всего 90Sr, 137Cs и 239+240Pu) в окружающую среду и их накопление в почве, растительности, сельскохозяйственной и пищевой продукции. В районе размещения СХК, где ведётся строительство ОДЭК, также проведено радиоэкологическое обследование природных [9] и аграрных [10] экосистем на уровне техногенного фона. Это позволило оценить многолетнее влияние СХК на радиационную обстановку в регионе размещения БРЕСТ-ОД-300 до начала работы нового реактора.

АО «ГНЦ НИИАР» является одним из старейших в России институтов (работает с 1956 г.), стоявшим у истоков создания атомной отрасли в стране. На базе построенных в АО «ГНЦ НИИАР» в разные годы исследовательских реакторов: СМ (запущен в 1961 г.), ВК-50 (1965 г.), МИР (1966 г.), БОР-60 (1969 г.), РБТ-6 (1975 г.), РБТ-10 (1984 г.) проводятся фундаментальные и прикладные исследования по ядерным технологиям для всех типов, используемых в России промышленных энергоблоков АЭС [11]. Так, исследования на реакторе БОР-60 с натриевым теплоносителем стали научной базой для создания реакторов на быстрых нейтронах типа БН и МБИР [12]. Деятельность АО «ГНЦ НИИАР» сопровождается строго регламентированными выбросами радионуклидов, включающих инертные радиоактивные газы, альфа- и бета-излучающие аэрозоли (в большей степени 137Cs, 90Sr и 239,240Pu), а также сбросами радиоизотопов в гидрографическую сеть [11]. Начатое строительство ИЯУ МБИР на площадке АО «ГНЦ НИИАР» ставит задачу комплексно проанализировать многолетнее воздействие выбросов и сбросов института на окружающую среду. Данные по сформировавшемуся техногенному фону в наземных и водных экосистемах в районе размещения АО «ГНЦ НИИАР» станут основой для дальнейшей сравнительной оценки влияния ИЯУ МБИР на человека и биоту.

Целью данной работы является радиоэкологическая оценка состояния наземных экосистем в районе расположения АО «ГНЦ НИИАР» перед началом эксплуатации ИЯУ МБИР.

Материалы и методы

Анализ радиоэкологической обстановки в природных наземных и аграрных экосистемах района размещения АО «ГНЦ НИИАР» проводили на основе обобщения собственных результатов радиационного обследования 30-км зоны вокруг предприятия в 2011 г., многолетних данных мониторинга Росгидромета вблизи радиационно-опасного объекта [13], годовых отчётов по экологической безопасности института [11] и других научных исследований [14].

АО «ГНЦ НИИАР» расположено в 5,5 км от г. Димитровград (Ульяновская область) и в 5 км от Черемшанского залива Куйбышевского водохранилища р. Волга. Санитарно-защитная зона (СЗЗ) предприятия представляет собой многоугольник с варьированием границ от основного источника выбросов радионуклидов в атмосферу (труба единого вентиляционного центра) в пределах 2,65-4,97 км. Площадь СЗЗ института составляет 35 км2. Зона наблюдения (ЗН) является круговой с радиусом 12,5 км [11]. Вся территория наземных экосистем СЗЗ и большей части ЗН покрыта лесом. Сельскохозяйственное производство частично ведётся в ЗН в западном и юговосточном направлениях. При проведении радиационного обследования пробы компонентов наземных экосистем (почва, сопряжённая с растительностью) отбирали в СЗЗ, ЗН, а также зоне влияния (ЗВ), т.е. возможного воздействия института на окружающую среду в пределах 30-км вокруг предприятия (рис. 1). Все точки отбора проб выбирали с учётом «розы» ветров на разном расстоянии и направлениях от АО «ГНЦ НИИАР» так, чтобы на доминирующих типах почв были представлены основные природные и аграрные экосистемы (табл. 1). Количество точек пробоот-бора и их размещение являлось достаточным для пространственной характеристики уровней содержания радионуклидов в почвенно-растительном покрове района расположения радиационноопасного объекта [15, 16]. Таким образом, обеспечена оценка максимально возможного воздействия АО «ГНЦ НИИАР» на наземные экосистемы. В природных экосистемах и на целинных участках агроэкосистем отбирали верхний слой почвы глубиной 0-10 см, на пашне пахотный горизонт глубиной 0-20 см. Для оценки вертикальной миграции техногенных радионуклидов на представительных участках природных экосистем СЗЗ и ЗН пробы почвы отбирали послойно на глубину до 30 см.

Рис. 1. Карта-схема точек пробоотбора наземных экосистем в районе расположения АО «ГНЦ НИИАР»: А – в санитарно-защитной зоне, Б – в зоне наблюдения (12,5 км) и зоне влияния (30 км).

Количество точек отбора проб наземных экосистем в районе расположения АО «ГНЦ НИИАР»

Таблица 1

Тип экосистемы

Санитарно-защитная зона (0-5,0 км)

Зона наблюдения (5,0-12,5 км)

Зона влияния (12,5-30,0 км)

П

риродные

Лес

8

4

-

Болото

1

-

-

Луг

-

1

-

Аграрные

Пашня

-

4

9

Пастбище

-

1

5

Залежь

-

-

1

Всего

9

10

15

Результаты

Анализ данных радиационного обследования наземных экосистем в 30-км зоне вокруг АО «ГНЦ НИИАР» показал, что средняя удельная активность в почве основных природных радионуклидов (40K, 226Ra и 232Тh) на 25-35% ниже, чем аналогичные показатели, представленные в публикации НКДАР ООН [17] для территории России (табл. 2). МАЭД в точках пробоотбора была также значительно меньше верхней границы природного радиационного фона (0,3 мкЗв/ч). Так, в 2011 г. МАЭД варьировала на исследуемой территории в диапазоне 0,06-0,13 мкЗв/ч и по выделенным зонам вокруг радиационно-опасного объекта значимо не отличалась. В СЗЗ МАЭД составляла 0,10±0,02; в ЗН - 0,09±0,01; в ЗВ - 0,11±0,01 мкЗв/ч. По многолетним (2002-2020 гг.) наблюдениям Росгидромета [13] показатель МАЭД в населённых пунктах ЗН и ЗВ АО «ГНЦ НИИАР» был стабилен, варьируя в пределах 0,10-0,13 мкЗв/ч, т.е. близок к результатам обследования 2011 г. За последние 12 лет максимальные уровни МАЭД отмечены на уровне 0,18 мкЗв/ч лишь в ЗН предприятия [11].

Таблица 2

Удельная активность природных радионуклидов в почве наземных экосистем района расположения АО «ГНЦ НИИАР», Бк/кг

Радионуклид

Среднее

Станд. откл.

Геом. сред.

Мин.

Макс.

Число проб

40 K

387

152

348

108

615

34

по данным [17]

520

-

-

100

1400

-

226Ra

17

6

16

6

44

34

по данным [17]

27

-

-

1

76

-

232 Тh

19

10

16

3

39

34

по данным [17]

30

-

-

2

79

-

Оценка содержания в почве района размещения АО «ГНЦ НИИАР» основных радиологически значимых техногенных радионуклидов показала различный характер их поступления в наземные экосистемы за 40 лет работы предприятия. Так, плотность загрязнения 90Sr почвенного покрова в пределах 30 км от института практически не меняется, находясь в среднем на уровне 0,6-1,0 кБк/м2 (табл. 3). В то же время, плотности загрязнения почв наземных экосистем 137Cs по выделенным зонам варьируют в достаточно широких пределах. Снижение уровней загрязнения 137Cs почвенного покрова наблюдается в ряду СЗЗ>ЗН>ЗВ в соотношении 8,5:3,6:1,0. Для 90Sr этот показатель значительно меньше: 1,7:1,3:1,0. Соотношение 137Cs/90Sr в почве наземных экосистем по выделенным зонам изменяется в среднем на порядок, составляя для СЗЗ – 24,5±19,4; ЗН – 8,2±6,8. В ЗВ это отношение минимально – 2,0±0,5 и близко к уровню глобальных радиоактивных выпадений (1,6). Таким образом, роль АО «ГНЦ НИИАР» в загрязнении наземных экосистем радиоизотопом стронция не существенна. При этом за счёт многолетних выбросов аэрозолей в результате работы шести исследовательских реакторов предприятия произошло поступление в окружающую среду 137Cs. Однако большая часть активности радионуклида депонирована в пределах СЗЗ института, которая характеризуется пятнистостью загрязнения. Даже участок наземной экосистемы в СЗЗ с максимальной плотностью загрязнения почвы 137Cs (32 кБк/м2) нельзя классифицировать как радиоактивно загрязнённый (критерий отнесения свыше 37 кБк/м2).

Таблица 3

Характеристика поверхностного загрязнения техногенными радионуклидами почв наземных экосистем в районе расположения АО «ГНЦ НИИАР» в 2011 г.

Радионуклид

Зона

Среднее

Станд. откл.

Геом. сред.

Мин.

Макс.

Число проб

Удельная активность, Бк/кг

137 Cs

СЗЗ

85,7

50,4

66,8

26,8

246,4

9

ЗН

23,7

17,5

15,4

5,1

73,1

10

ЗВ

10,3

3,2

9,5

4,4

21,2

15

90Sr

СЗЗ

7,7

4,7

5,8

2,0

23,3

7

ЗН

6,0

2,2

5,6

2,9

8,9

5

ЗВ

4,9

1,0

4,8

4,1

6,4

3

Плотность загрязнения, кБк/м2

137 Cs

СЗЗ

11,1

6,5

8,7

3,5

32,0

9

ЗН

3,1

2,3

2,0

0,7

9,5

10

ЗВ

1,3

0,4

1,2

0,6

2,8

15

90 Sr

СЗЗ

1,0

0,6

0,8

0,3

3,0

7

ЗН

0,8

0,3

0,7

0,4

1,2

5

ЗВ

0,6

0,1

0,6

0,5

0,8

3

Необходимо отметить, что в СЗЗ АО «ГНЦ НИИАР» всё же имеется участок локального радиоактивного загрязнения, который сформировался в результате прошлой деятельности предприятия в месте сброса технологических вод по промышленно-ливневой канализации (ПЛК-1). Достаточно высоким уровням радиоактивного загрязнения подверглись грунты вдоль русла ПЛК-1 (площадь 2,6 тыс. м2) и прилегающее к ней болото (120 тыс. м2). Уровень МАЭД на данном участке СЗЗ варьирует в пределах 0,6-6,0 мкЗв/ч. Удельная активность 137Cs в почве составляет 6,4-20,0 кБк/кг, 90Sr – в пределах 0,05-0,26 кБк/кг, 239,240Pu – на уровне 5,3-12,1 кБк/кг [11]. Отбор в ходе радиационного обследования контрольной пробы почвы рядом с ПЛК-1 на глубину 0-10 см подтвердил высокое содержание в ней 137Cs, которое составило 4,7 кБк/кг. Дополнительно в почве были также идентифицированы и другие техногенные радионуклиды: 134Cs - 23,6 Бк/кг, 60Co - 13,6 Бк/кг, 65Zn - 5,2 Бк/кг, 54Mn - 20,9 Бк/кг. Образование участка локального радиоактивного загрязнения в районе расположения АО «ГНЦ НИИАР» не является уникальным. Вследствие несовершенства систем очистки сбросных технологических вод на ранних этапах развития ядерных технологий вблизи ряда радиационно-опасных объектов образовались локальные участки с повышенным уровнем радиоактивности. Примером такого «радиационного наследия» является участок Ольховского болота в СЗЗ Белоярской АЭС с высоким содержанием в грунтах техногенных радионуклидов, которые поступали в составе сбросов при эксплуатации первых реакторов АМБ-100 и АМБ-200 [3]. В настоящее время научно обоснованы критерии по характеристике и реабилитации таких зон локальных радиоактивных загрязнений [18, 19].

Анализ вертикального распределения 137Cs в почвенном профиле участков природных экосистем СЗЗ и ЗН показал отличия в закономерностях вертикальной миграции радионуклида. Так, на лесных участках вне зависимости от зоны (рис. 2А и 2В), от 58 до 63% 137Cs аккумулировано в верхнем 0-2 см слое почвы, а на глубине 0-5 см депонируется более 90% радионуклида.

Рис. 2. Распределение 137Cs в почвенном профиле участков природных экосистем в районе расположения АО «ГНЦ НИИАР»: А – лес в СЗЗ, Б – болото в СЗЗ, В – лес в ЗН, Г – луг в ЗН.

На лугах миграционные процессы идут более активно (рис. 2Г). Здесь основной запас 137Cs содержится в почвенном слое 2-5 см (около 60%), однако, как и на лесных участках, большая часть радионуклида (более 95%) аккумулируется в слое 0-5 см. Это обусловлено формированием в лесных и луговых ценозах мощной дернины с развитой корневой системой. Она способствует удерживанию и накоплению в верхнем слое почвы природных экосистем основного количества техногенных радионуклидов, поступающих с атмосферными выпадениями. На заболоченном участке (рис. 2Б) состав почвы и гидрологический режим способствуют более интенсивной миграции 137Cs. На глубину до 10 см радионуклид распределяется равномерно и, в отличие от лесных и луговых ценозов, частично мигрирует в более глубокий почвенный горизонт до 20 см.

Сравнение данных обследования наземных экосистем района размещения АО «ГНЦ НИИАР» в 2011 г. (табл. 3) с результатами многолетних наблюдений Росгидромета [13] и самого предприятия [11, 14] показало хорошую сходимость полученных значений (рис. 3). Линейная аппроксимация данных мониторинга плотности загрязнения техногенными радионуклидами почв наземных экосистем показывает, что за последние 15 лет наблюдается стабильное снижение этого показателя, которое для 137Cs идёт точно в соответствии с законом распада радионуклида, а для 90Sr близко к нему. Это позволяет сделать вывод, что АО «ГНЦ НИИАР» в ЗН и ЗВ не оказывает значимого влияния на загрязнение техногенными радионуклидами наземных экосистем.

Рис. 3. Динамика плотности загрязнения почв наземных экосистем в зоне влияния АО «ГНЦ НИИАР»: А – 137Cs, Б – 90Sr (по данным [11, 13]).

Учитывая выделенные закономерности, в соответствии с законами распада 137Cs и 90Sr, сделан прогноз до 2080 г. динамики уровней загрязнения наземных экосистем радионуклидами всех зон в пределах 30-км вокруг АО «ГНЦ НИИАР» (табл. 4).

Таблица 4

Прогноз минимальных и максимальных плотностей загрязнения техногенными радионуклидами почв наземных экосистем в районе расположения АО «ГНЦ НИИАР», кБк/м2

Зона

Год

2020

2030

2040

2050

2060

2070

2080

137 Cs

СЗЗ

3,7-14,3

3,0-11,3

2,4-9,0

1,9-7,1

1,5-5,7

1,2-4,5

0,9-3,6

ЗН

0,6-4,4

0,5-3,5

0,4-2,8

0,3-2,2

0,3-1,7

0,2-1,4

0,2-1,1

ЗВ

0,7-1,4

0,6-1,1

0,5-0,9

0,4-0,7

0,3-0,5

0,2-0,4

0,2-0,3

90 Sr

СЗЗ

0,3-1,3

0,3-1,0

0,2-0,8

0,2-0,6

0,1-0,5

0,1-0,4

0,1-0,3

ЗН

0,4-0,9

0,3-0,7

0,3-0,6

0,2-0,4

0,2-0,4

0,1-0,3

0,1-0,2

ЗВ

0,4-0,6

0,3-0,5

0,3-0,4

0,2-0,3

0,2-0,2

0,1-0,2

0,1-0,14

Полученные диапазоны значений плотности загрязнения 137Cs и 90Sr можно использовать как базовые для оценки изменения радиационной обстановки в районе размещения АО «ГНЦ НИИАР» как до, так и после ввода в эксплуатацию ИЯУ МБИР. В случае превышения рассчитанных показателей рекомендуется оценить влияние радиационно-опасного объекта на окружающую среду за счёт газо-аэрозольных выбросов.

При анализе радиационной обстановки в наземных экосистемах, помимо оценки плотностей загрязнения техногенными радионуклидами почвы, важно сравнить накопление радиоизотопов в различных компонентах ценозов, сельскохозяйственной и пищевой продукции. Так, максимальное содержание 137Cs отмечено в опаде листьев, а по выделенным зонам – в лесной растительности СЗЗ (рис. 4), что отражает закономерности, представленные выше для почвенного покрова вблизи предприятия.

Рис. 4. Содержание 137Cs в компонентах природных наземных экосистем 30-км зоны вокруг АО «ГНЦ НИИАР» (СЗЗ – санитарно-защитная зона, ЗН – зона наблюдения, ЗВ – зона влияния).

Отличия между лесной растительностью СЗЗ и ЗН по накоплению 137Cs составляют, в среднем, для опада листьев – 2,9, папоротника – 2,1, разнотравья – 3,2 раза. Для луговой растительности разница в показателях удельной активности 137Cs между ЗН и ЗВ небольшая и не превышает 1,3 раза, что также коррелирует с плотностями загрязнения радионуклидом почвенного покрова. По данным многолетнего (2006-2020 гг.) мониторинга АО «ГНЦ НИИАР» в ЗН и ЗВ среднее содержание 137Cs в природной растительности находится на уровне 1,08±0,85 Бк/кг, что близко к результатам, полученным нами при радиационном обследовании в 2011 г. Низкая вариабельность, на длительном временном отрезке, содержания 137Cs в растительности, которая является индикатором накопления техногенных радионуклидов, подтверждает стабильность радиационной обстановки в районе размещения АО «ГНЦ НИИАР».

Результаты радиационного контроля пищевой продукции, произведённой в районе расположения АО «ГНЦ НИИАР», показали, что средняя удельная активность 90Sr в ключевом продукте животноводства – коровьем молоке из ЗВ института – составляет 0,13±0,03 Бк/л (при n=4), 137Cs – 0,20±0,06 Бк/л. Максимальный уровень содержания 90Sr в молоке более чем в 150 раз меньше действующего норматива СанПиН (25 Бк/л), а по 137Cs (норматив 100 Бк/л) эта разница составляет более 300 раз. Результаты радиационного обследования 2011 г. подтверждаются также и данными многолетних наблюдений за содержанием техногенных радионуклидов в молоке района размещения АО «ГНЦ НИИАР». Так, в период 2006-2020 гг. удельная активность 137Cs в молоке местного производства составила 0,22±0,20 Бк/л, 90Sr – 0,11±0,06 Бк/л [11], что близко к результатам наших исследований. Данные мониторинга также показывают и низкое содержание техногенных радионуклидов в продукции растениеводства из региона АО «ГНЦ

НИИАР». Например, средняя удельная активность 137Cs в зерне за 14-летний период исследований составила 0,57±0,36 Бк/кг, 90Sr – 0,27±0,21 Бк/кг. Это в 65 раз ниже действующего радиологического норматива СанПиН по 137Cs (60 Бк/кг). 90Sr в продовольственном зерне в действующих СанПиН не нормируется, однако содержание в этой продукции растениеводства данного радионуклида также минимально.

Из природных продуктов питания наиболее радиологически важными для человека являются грибы как максимальные накопители радионуклидов. Пробы данного вида пищевой продукции отбирали в СЗЗ института с целью консервативной оценки максимально возможного влияния грибов на формирование дозы внутреннего облучения населения. Средняя удельная активность 137Cs в грибах из СЗЗ АО «ГНЦ НИИАР» составила в 2011 г. 18,6±11,6 Бк/кг (при n=4), что более чем в 15 раз ниже радиологического норматива, установленного в СанПиН (500 Бк/кг). В целом, представленные данные показывают крайне низкое содержание техногенных радионуклидов в сельскохозяйственной и природной пищевой продукции в районе размещения АО «ГНЦ НИИАР» в течение длительного периода наблюдений.

Заключение

Проведённый сравнительный анализ данных радиационного обследования района расположения АО «ГНЦ НИИАР» в 2011 г. и результатов длительных (2002-2020 гг.) наблюдений позволяет сделать ряд радиоэкологических выводов.

  • 1.    Многолетняя деятельность АО «ГНЦ НИИАР» не привела к существенному ухудшению радиоэкологической обстановки в районе размещения радиационно-опасного объекта. Средние показатели МАЭД как в ближней зоне предприятия, так и на удалении до 30 км от него находятся на уровнях в 2,5-5,0 раз ниже верхней границы природного радиационного фона (0,3 мкЗв/ч).

  • 2.    За счёт газо-аэрозольных выбросов АО «ГНЦ НИИАР» произошло значимое, по сравнению с региональным техногенным фоном, поступление в компоненты наземной экосистемы (почва, растительность) санитарно-защитной зоны института только 137Cs. В то же время, даже участок с максимальной плотностью загрязнения почвы данным радионуклидом (32 кБк/м2) нельзя отнести к радиоактивно загрязнённому.

  • 3.    Отмечено наличие в санитарно-защитной зоне АО «ГНЦ НИИАР» участка локального радиоактивного загрязнения в русле сброса технологических вод в результате прошлой деятельности предприятия. Это требует анализа миграции радионуклидов в пресноводную экосистему Черемшан-ского залива Куйбышевского водохранилища, что является темой отдельного исследования.

  • 4.    Показано, что более 90% 137Cs в почвенном покрове лесных и луговых экосистем в районе размещения АО «ГНЦ НИИАР» депонируется в верхнем 0-5 см слое. В экосистеме болота радионуклид мигрирует в почве на большую глубину – до 20 см.

  • 5.    Содержание 137Cs и 90Sr в сельскохозяйственной и природной пищевой продукции, производимой в районе расположения АО «ГНЦ НИИАР», в десятки и сотни раз ниже действующих радиологических стандартов. Поэтому её потребление не оказывает значимого влияния на дополнительное облучение населения, проживающего в регионе размещения радиационно-опасного объекта.

  • 6.    После ввода в эксплуатацию ИЯУ МБИР необходимо продолжение радиоэкологического мониторинга природных и аграрных экосистем с целью оценки воздействия нового реактора на человека и окружающую среду. Рассчитанные прогнозные до 2080 г. значения плотностей загрязнения 137Cs и 90Sr почвенного покрова 30-км зоны вокруг АО «ГНЦ НИИАР» определяют методическую базу для такого сравнительного анализа.

Список литературы Оценка радиационной обстановки в районе расположения АО "ГНЦ НИИАР" до начала эксплуатации ИЯУ МБИР. Часть 1. Наземные экосистемы

  • Alexakhin R.M. Topical environmental problems of nuclear power //Atomic Energy. 2013. V. 114, N 5. P. 301-307. DOI: 10.1007/s10512-013-9715-x.
  • Атомная энергетика нового поколения: радиологическая состоятельность и экологические преимущества /под общ. ред. В.К. Иванова, Е.О. Адамова. М.: Перо, 2019. 379 с.
  • Колтик И.И. Атомные электростанции и радиационная безопасность. Екатеринбург: УГТУ-УПИ, 2001. 368 с.
  • Драгунов Ю.Г., Третьяков И.Т., Лопаткин А.В., Романова Н.В., Лукасевич И.Б. Многоцелевой быстрый исследовательский реактор (МБИР) - инновационный инструмент для развития ядерных энерготехнологий //Атомная энергия. 2012. Т. 113, № 1. С. 25-28.
  • Tuzov A.A., Gulevich A.V., Kochetkov L.A., Tret'yakov I.T., Lukasevich I.B., Zvir A.I., Izhutov A.L., Leont'eva-Smirnova M.V., Tselishchev A.V. Potential problems of MBIR in validating new-generation nuclear power facilities and its experimental possibilities //Atomic Energy. 2015. V. 119, N 1. P. 32-36. DOI: 10.1007/s10512-015-0025-3.
  • Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. IAEA Safety Standards Series No. GSR Part 3. Vienna: IAEA, 2014. 436 p.
  • Panov A.V., Kuznetsov V.K., Isamov N.N., Geshel I.V., Trapeznikov A.V., Korzhavin A.V. Assessment of the influence of BN-800 operation on the radioecological situation in the vicinity of Beloyarsk NPP //Atomic Energy. 2021. V. 129, N 5. P. 297-304. DOI: 10.1007/s10512-021-00751-6.
  • Панов А.В., Трапезников А.В., Кузнецов В.К., Коржавин А.В., Исамов Н.Н., Гешель И.В. Радиационно-экологический мониторинг агроэкосистем в районе Белоярской АЭС //Известия Томского политехнического университета. Инжиниринг георесурсов. 2021. Т. 332, № 3. С. 146-157. DOI: 10.18799/24131830/2021/3/3110.
  • Карпенко Е.И., Кузнецов В.К., Исамов Н.Н., Соломатин В.М., Томсон А.В., Ратникова Л.И. Радиоэкологическое обследование наземных и водных экосистем в районе размещения АО «СХК» //Радиация и риск. 2019. Т. 28, № 3. C. 63-74. DOI: 10.21870/0131-3878-2019-28-3-63-74.
  • Solomatin V.M., Aleksakhin R.M., Spirin E.V., Sorokin I.B., Zhivago A.I., Ryzhova L.I. Radioecological state of the agrosphere in the 30-km zone of the Siberian Chemical Combine during the pre-startup period of a prototype power complex //Atomic Energy. 2018. V. 124, N 1. P. 50-53. DOI: 10.1007/s10512-018-0373-x.
  • Отчёты по экологической безопасности за 2008-2020 годы. Димитровград: АО «ГНЦ НИИАР», 2008-2020.
  • Zhemkov I.Y., Izhutov A.L., Novoselov A.E., Poglyad N.S., Svyatkin M.N. Experimental research in BOR-60 and analysis of its continuation in MBIR //Atomic Energy. 2014. V. 116, N 5. P. 338-342. DOI: 10.1007/s10512-014-9862-8.
  • Радиационная обстановка на территории России и сопредельных государств в 2002-2020 годах. Ежегодники, 2004-2021. Обнинск: Росгидромет, ФГБУ «НПО Тайфун», 2004-2021.
  • Шарапова Т.В., Тузов А.А., Теплова Т.Е. Оценка применимости фрактального подхода для описания процессов распространения радионуклидов в почвенном покрове на основании данных радиационно-экологического мониторинга в зоне наблюдения АО «ГНЦ НИИАР» //Радиация и риск. 2021. Т. 30, № 3. С. 46-55. DOI: 10.21870/0131-3878-2021-30-3-46-55.
  • МР 2.6.1.27-2003. Зона наблюдения радиационного объекта. Организация и проведение радиационного контроля окружающей среды: методические рекомендации. М.: Технорматив, 2007. 70 с.
  • МУ 13.5.13-00. Организация государственного радиоэкологического мониторинга агроэкосистем в зоне воздействия радиационно-опасных объектов. М.: Изд-во РАСХН, 2000. 28 с.
  • Sources and Effects of Ionizing Radiation (Report to the General Assembly with Scientific Annexes). Vol. 1 Sources. Annex B, Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). New York: United Nations, 2000. P. 84-156.
  • Panov A.V., Fesenko S.V., Sanzharova N.I., Aleksakhin R.M. Remediation of zones of local radioactive contamination //Atomic Energy. 2006. V. 100, N 2. P. 123-131. DOI: 10.1007/s10512-006-0059-7.
  • Романович И.К., Стамат И.П., Санжарова Н.И., Панов А.В. Критерии реабилитации объектов и территорий, загрязнённых радионуклидами в результате прошлой деятельности: 1. Выбор показателей для обоснования критериев реабилитации //Радиационная гигиена. 2016. Т. 9, № 4. С. 6-15. DOI: 10.21514/1998-426X-2016-9-4-6-15.
Еще
Статья научная