Olive leaves’ extract may attenuate cadmium-induced liver damage in Wistar rat
Автор: Ryma Chaker, Ouarda Mansouri, Zohra Hamamdia, Cherif Abdennour
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 3 т.16, 2020 года.
Бесплатный доступ
This study investigates the possible attenuation of cadmium toxicity by using fresh aqueous olive leaves extract (OLE) of Olea europea. Wistar rats were divided into a control group received a standard diet, two positive controls received 0.25 g/kg BW (OL1) and 0.5 g/kg BW (OL2), one group treated with CdCl2 (40 mg/kg BW), and finally, two other groups supplemented with the combination of Cd and OL (Cd+OL1, Cd+OL2). Cadmium and OL were administrated daily by gavage for one month. Hepatic histology, malondialdehyde (MDA), reduced glutathione (GSH), and serum biomarkers were evaluated. Results indicate a significant increase in the MDA level of the Cd group compared with the three control groups, however, a significant decrease was noted in the groups of Cd+OL1 and Cd+OL2 compared to the Cd group. For the GSH, the Cd group showed a significant decrease compared to all control groups. A significant rise in the concentration of total bilirubin, total cholesterol, and triglycerides and in the activities of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase was observed in the Cd-exposed rats compared to all controls, but the level of albumin and total proteins manifested significant decrease. However, the combined treatments have attenuated the toxicity of Cd through the recorded significant changes of most studied biochemical markers. The above results were confirmed by the histological study which revealed certain liver alterations in the Cd-exposed rats, while the co-administration of OL has reduced the hepatic tissue disorganization. In conclusion, OL seems effective to diminish the prooxidative effect of cadmium.
Attenuation, Cadmium, olive leaves extract, biochemical markers, rat
Короткий адрес: https://sciup.org/143173841
IDR: 143173841
Список литературы Olive leaves’ extract may attenuate cadmium-induced liver damage in Wistar rat
- Adedara I.A., Farombi E.O. (2010). Induction of oxidative damage in the testes and spermatozoa and hematotoxicity in rats exposed to multiple doses of ethylene glycol monoethyl ether. Hum. Exp. Toxicol., 29,801-812.
- Adefegha S.A., Omojokun O.S., and Oboh G. (2015). Modulatory effect of protocatechuic acid on cadmium induced nephrotoxicity and hepatoxicity in rats in vivo. SpringerPlus, 4, 619.
- Ajilore B.S., Atere T.G., Oluogun W.A. et al. (2012). Protective effects of Moringa oleifera Lam on cadmium induced liver and kidney damage in male Wistar rats. Int. J. Phytother. Res., 2(3),42–50.
- Albasha M.O. and Azab A.E. (2014). Effect of cadmium on the liver and amelioration by aqueous extract of fenugreek seeds, rosemary and cinnamon in guinea pigs: histological and biochemical study. Cell Biol., 2(2), 7–17.
- Albasher G. (2018). Anti-fibrogentic and hepatoprotective potential of methanolic olive extract on cadmium induced toxicity in rats. Life Sci., 15(7), 1-11.
- Alirezaei M., Dezfoulian O., Kheradmand A., Neamati S., Khonsari A. and Pirzadeh A. (2012). Hepatoprotective effects of purified oleuropein from olive leaf extract against ethanol-induced damages in the rat. Iran. J. Veter. Res., 13(3), 218-226.
- Amara S., Abdelmelek H., Garrel C., Guiraud P., Douk T. and Ravanat J.L. (2008). Preventive effect of zinc against cadmium-induced oxidative stress in the rat testis. J. Reprod. Develop., 54, 129-134.
- Andreadou I., Iliodromitis E.K., Mikros E., Constantinou M., Agalias A., Magiatis P., et al. (2006). The olive constituent uropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. J. Nutr. 136(8), 2213-2222.
- Andrikopoulo N.K., Kaliora A.C., Assimopoulou A.N. and Papageorgiou V.P. (2002). Inhibitory activity of minor polyphenolic and nonpolyphenolic constituents of olive oil against in vitro low-density lipoprotein oxidation. J. Med. Food, 5, 1–7.
- Athmouni K., Belhaj D.M., Kadmini H.K., El-Feki A., and Ayadi H. (2018). Arch. Physiol. Biochem., 124(3), 261-274.
- BenSalah M., Abdelmelek H. and Abderraba M. (2012). Study of phenolic composition and biological ctivities assessment of olive leaves from different varieties grown in Tunisia. Med. Chem., 2(5), 107–111.
- Bhattacharya S. (2018). The role of medicinal plants and natural products in melioration of cadmium toxicity. Orient. Pharm. Exp. Med. 18(10), 177-186.
- Botsoglou E., Govaris A., Fletouris D. and Iliadis S. (2013). Olive leaves (Olea europea L.) and α- tocopheryl acetate as feed antioxidants for improving the oxidative stability of α-linolenic acid-enriched eggs. J. Anim. Physiol. Anim. Nutr., 97(4), 740-753.
- Bradford M. (1976). A rapid and sensitive method for the quantities of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-254.
- Buchet J.P., Roels H., Masson P. and Lauwerys R. (1979). Renal excretion of proteins and enzymes in workers exposed to cadmium. Europ. J. Clin. Invetig., 9(1), 11-22.
- Buege J.A. and Aust S.D. (1984). Microsomal lipid peroxidation. Methods. Enzymol., 105, 302-310.
- Cazzola R. and Benvenuto C. (2014). Diabetes: Oxidative Stress and Dietary Antioxidants Chapter 9, Antioxidant Spices and Herbs, Used in Diabetes, Elsevier.
- Chawla R. (2003). Practical clinical biochemistry: methods and interpretations. Jaypee Brothers Publishers, New Delhi.
- Chen S., Zhang M., Bo L. et al. (2018). Metabolomic analysis of the toxic effect of chronic exposure of cadmium on rat urine. Environ. Sci. Pollut. Res., 25(4), 3765.
- Cheurfa M., Abdallah H.H., Allem R., Noui A., Picot-Allain C.M.N. and Mahomoodally F. (2018). Hypocholesterolaemic and antioxidant properties of Olea europaea L. leaves from Chlef province, Algeria using in vitro, in vivo and in silico approaches. Food Chem. Toxicol., 123, 98–105. CRL E.H.N. (2003). Cadmium Review. Nordic Council of Ministers. Report no 1(4).
- Dardouri K., Haouem S., Gharbi I., Sriha B., Haouas Z., El Hani A. and Hammami M. (2016). Combined effects of Cd and Hg on liver and kidney histology and function in Wistar rats. J. Agric. Chem. Environ., 5, 159–169.
- Dorostghoal M., Kazeminejad S.R., Shahbazian N., Pourmehdi M. and Jabbari A. (2017). Oxidative stress status and sperm DNA fragmentation in fertile and infertile men. Andrologia, 49, 1-9. EI S..N. and Karakaya S. (2009). Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr. Rev., 67(11), 632-638.
- Eidi A., Eidi M. and Darzi R. (2009). Antidiabetic effect of Olea europaea L. in normal and diabetic rats. Phytother. Res., 23, 347-350.
- El-Demerdash F.M., Yousef M.I., Kedwany F.S. and Baghdadi H.H. (2004). Cadmium induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and betacarotene. Food Chem. Toxicol., 42(10),1563-71.
- Ellman G.L. (1959). Tissue sulfhydryl groups. Arch Biochem. Biophys., 82, 70-77.
- Ersan Y., Ari I. and Koc E. (2008). Effect of cadmium compounds (cadmium parahydroxybenzoate and cadmium chloride) on the liver of mature mice. Turk. J. Zool., 32(2), 115–119.
- Fernandez-Bolanos J.G., Lopez O., Juan F., Fernandez-Bolanos J. and Rodriguez-Gutierrez G. (2008). Hydroxytyrosol and derivatives: Isolation, synthesis, and biological properties. Curr. Org. Chem., 12, 442-463.
- Ferreira I.C.F.R., Barros L., Soares M.E., Bastos M.L. and Pereira J.A. (2007). Antioxidant activity and phenolic contents of Olea europaea L. leaves sprayed with different copper formulations. Food Chem., 103, 188–195.
- Fotakis G. and Timbrell J.A. (2006). Modulation of cadmium chloride toxicity by Sulphur amino acids in hepatoma cells. Toxicol. In Vitro, 20, 641-648.
- Ghorbel I., Elwej A., Fendri N., Mnif H., Jamoussi K., Boudawara T., et al. (2017). Olive oilabrogates acrylamide induced nephrotoxicity by modulating biochemical and histological changes in rats. Ren. Fail., 39(1), 236-45.
- Gong P., Chen F.X., Ma G.F., Feng Y., Zhao Q.Y. and Wang R. (2008). Endomorphin 1 effectively protects cadmium chloride induced hepatic damage in mice. Toxicol. 251, 35–44.
- Grosicki A. and Kowalski B. (2002). Whole-body and organ retention of cadmium after repeated administration to rats. Bull. Vet. Inst. Pulawy., 46, 143-147.
- Hartwig A. and Schwerdtle T. (2002). Interactions by carcinogenic metal compounds with DNA repair processes: toxicological implications. Toxicol. Lett., 127, 47-54.
- Heim K.E., Tagliaferro A.R. and Bobilya D.J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 13, 572-584.
- Jemai H., El-Feki A, and Sayadi S. (2009). Antidiabetic and Antioxidant Effects of Hydroxytyrosol and Oleuropein from Olive Leaves in Alloxan-Diabetic Rats. J. Agricul. Food Chem., 57(19), 8798-804.
- Jemai H., Anwar F., Mahmoudi A., El-Feki A., Bouallagui Z. and Sayadi S(2019). Oleuropein protects kidney against oxidative and histopathological damages in subchronic cadmium intoxicated mice. Indian. J. Experim. Biol., 57(08), 602-609.
- Julin B., Wolk A., Johansson J.E., Andersson S.O., Andrén O. and Akesson A. (2012). Dietary Cadmium Exposure and Prostate Cancer Incidence : A Population-Based Prospective Cohort Study. Br. J. Cancer, 10(5), 895–900.
- Kamboh A.A. and Zhu W.Y. (2013). Individual and combined effects of genistein and hesperidin supplementation on meat quality in meat-type broiler chickens. J. Sci. Food Agr., 93, 3362-3367.
- Liss G., Greenberg R.A. and Tamburro C.H. (1985). Use of serum bile acids in the identification of vinyl chloride hepatotoxicity. Am. J. Med., 78, 68-73.
- Lockyer S., Rowland I., Spencer J.P.E. et al. (2017). Impact of phenolic-rich olive leaf extract on blood pressure, plasma lipids and inflammatory markers: a randomised controlled trial. Eur. J. Nutr., 56, 1421-1432.
- Manach C., Scalbert A., Morand C., Rémésy C. and Jiménez L. (2004). Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr., 79(5), 727-47.
- Sinha M. and Sil P.C. (2008). Amelioration of cadmium-induced cardiac impairment by taurine. Chem. Biol. Interact., 174(2), 88-97.
- Mężyńska M. and Brzóska M.M. (2018). Review of polyphenol-rich products as potential protective and therapeutic factors against cadmium hepatotoxicity. J. Appl. Toxicol., 39(1), 117-145.
- Miles E.A., Zoubouli P. and Calder P.C. (2005). Differential anti-inflammatory effects of phenolic compounds from extra virgin olive oil identified in human with blood cultures. Nutr., 21, 389-94.
- Mohamed N.E. (2019). Effect of Aqueous Extract of Glycyrrhizaglabra on the Biochemical Changes Induced by Cadmium Chloride in Rats. Biol. Trace Elem. Res., 190(1), 87-94.
- Morin D., Zini R., Tillement S.P. and Burdeau A. (2004). Prevention of cell domageinischemic-eperfusion: mitochondrial respiratory chain as a pharmacological target. Lett. Drugs Discov., 1, 279-284.
- Moss D.W., and Butterworth P.J. (1974). Enzymology and medicine. Pitman Med, London 6, 3-11.
- Mousa H.M., Ismail M.S., Al-Hassan A.A., Ammar A.S. and Abdel-Salam A.M. (2014). Antidiabetic effect of olive leaves extract in alloxandiabetic rats. J. Agricul. Veter. Sci., 267, 1-10.
- Nampoothiri L.P. and Gupta S. (2008). Biochemical effects of gestational co-exposure to lead and cadmium on reproductive performance, placenta and ovary. J. Biochem. Mol. Toxicol., 22(5), 337–344.
- Concepción N.M,. Pilar M.M., Martín A., Jiménez J. and Pilar U.M. (1993). Free radical scavenger and antihepatotoxic activity of bosmarinus tonwntosus. Planta Med., 59, 312-314.
- Nordberg G.F., Nogawa K., Nordberg M. and Friberg L. (2007). Cadmium. Chapter 23. Handbook on the toxicology of metals, 3rd edition, Academic Press, Elsevier, 446-486.
- Ognjanovic B.I., Markovic S.D., Pavlovic S.Z., Zikic R., Stajn A.S. and Saicic Z.S. (2008). Effect of chronic cadmium exposure on antioxidant defense system in some tissues of rats: effect of selenium. Physiol. Res. 57, 403-411.
- Oh S.H., Jeong-Eun C. and Sung-chul L. (2006). Protection of Betulin against Cadmium Induced Apoptosis in Hepatoma Cells. Toxicol., 220(1), 1–12.
- Olmo-García L., Bajoub A., Benlamaalam S., Hurtado-Fernández E., Bagur-González M.G., et al. (2018). Establishing the Phenolic Composition of Olea europaea L. Leaves from Cultivars Grown in Morocco as a Crucial Step Towards Their Subsequent Exploitation. Molecules, 23(10), 2524.
- Özcan M.M. and Matthäus B. (2017). Benefit and bioactive properties of olive (Olea europaea L.) leaves. A review: Eur. Food Res. Technol., 243, 89-99.
- Ranieri M., Di Mise A., Difonzo G., Centrone M., Venneri M., Pellegrino T., et al. (2019). Green olive leaf extract (OLE) provides cytoprotection in renal cells exposed to low doses of cadmium. PLosONE, 14(3), e0214159.
- Renugadevi J. and Prabu S.M. (2010). Cadmium induced hepatotoxicity in rats and the protective effect of naringin. Exp. Toxicol. Pathol., 62, 171–181.
- Sanjeev S., Bidanchi R.M., Murthy M.K. et al. (2019). Influence of ferulic acid consumption in ameliorating the cadmium-induced liver and renal oxidative damage in rats. Environ. Sci. Pollut. Res., 26(20), 20631-20653.
- Savournin C., Baghdikian B., Elias R., Dargouth- Kesraoui F., Boukef K. and Balansard G. (2001). Rapid high-performance liquid chromatography analysis for the quantitative determination of oleuropein in Olea europaea leaves. J. Agric. Food Chem., 49(2), 618-621.
- Seok S.M., Park D.H., Kim Y.C., Moon C.H., Jung Y.S. and Baik E.J. (2006). COX-2 is associated with cadmium-induced ICAM-1 expression in cerebrovascular endothelial cells. Toxicol. Lett., 165, 212-220.
- Stohs M,. Shimada A., Zhang B. and Tohyama C. (2000). Renal toxicity caused by cisplatinum in glutathione-depleted metallothionein-null mice. Biochem. Pharmacol., 60,1729-1734.
- Swiergosz-Kowalewska R. (2001). Cadmium distribution and toxicity in tissues of small rodents. Microscopy Res. Techn., 55(3), 208-22.
- Szychlinska M.A., Castrogiovanni P., Trovato F.M. et al. (2019). Physical activity and Mediterranean diet based on olive tree phenolic compounds from two different geographical areas have protective effects on early osteoarthritis, muscle atrophy and hepatic steatosis. Eur. J. Nutr., 58(2), 565-581.
- Wasowicz, W., Gromadzinska, J., and Rydzynski, K. (2001). Blood concentration of essential trace elements and heavy metals in workers exposed to lead and cadmium. Intern. J. Occup. Med. Environ. Health, 14, 223–229.
- Wimmer U., Wang Y., Georgiev O. and Schaffner W. (2005). Two major branches of anti-cadmium defense in the mouse: MTF-1/metallothioneins and glutathione. Nucleic Acids Res., 33(18), 5715-5727.
- Zaidi S.M. and Banu N. (2004). Antioxidant potential of vitamins A, E and C in modulating oxidative stress in rat brain. Clin. Chim. Acta, 340(1), 229-233.