On stress-affected kinetics of intermetallic compound growth in the presence of electromigration

Бесплатный доступ

This paper is concerned with the analytical modeling of an intermetallic compound formation in a eutectic tin solder joint on copper interconnects subjected to an electrical current. We propose a model that couples mechanical stresses, chemical reaction, diffusion, temperature, and electromigration. The kinetics of the chemical reaction fronts of the intermetallic phase formation is investigated based on the notion of the chemical affinity tensor within the small strain approximation. It allows incorporating the influence of stresses and strains on the chemical reaction rate and the normal component of the reaction front velocity in a rational manner. Electromigration is introduced into the model as an additional summand in the total flux of the diffusive constituents, which, in turn, also affects the reaction front velocity. In the considered model, the mechanical stresses arise due to the internal strains produced by the chemical transformation and by the thermal expansion. We formulate a model problem for planar reaction fronts. Within this model, the influence of stresses and electromigration on the reaction front kinetics is studied analytically. Based on the Mean-Time-To-Failure (MTTF) criteria, we calculate the critical thickness of the solder joint and estimate the amount of the accumulated vacancies. We introduce a dimensionless parameter, which characterizes the accumulation of vacancies due to electromigration enhanced diffusion. Finally, we discuss the coupling between the accumulated vacancies and Kirkendall void nucleation.

Еще

Mechanochemistry, intermetallic compounds, lead-free solder, chemical affinity tensor, chemical reaction kinetics, diffusion, electromigration, internal stresses, vacancies, kirkendall voids

Короткий адрес: https://sciup.org/146282027

IDR: 146282027   |   DOI: 10.15593/perm.mech/2020.4.01

Список литературы On stress-affected kinetics of intermetallic compound growth in the presence of electromigration

  • S. Cheng, C.-M. Huang, and M. Pecht, A review of lead-free solders for electronics applications, Microelectronics Reliability 2017.
  • F. Mohd, C. Basaran, and Y.-S. Lai, Thermomigration versus electromigration in microelectronics solder joints, Advanced Packaging, IEEE Transactions 2009, Vol. 32, pp. 627-635.
  • B. Chao, S.-H. Chae, X. Zhang, K. Lu, M. Ding, J. Im, and P. Ho, Electromigration enhanced intermetallic growth and void formation in Pb-free solder joints, Journal of Applied Physics 2006, Vol. 100, 084909-084909.
  • A. Smigelskas and E. Kirkendall, Zinc diffusion in alpha brass, Trans. AIME 1947, Vol. 27, pp. 130-142.
  • B. Chao, X. Zhang, S.-H. Chae, and P. Ho, Recent advances on kinetic analysis of electromigration enhanced intermetallic growth and damage formation in pb-free solder joints, Microelectronics Reliability 2009, Vol. 49, pp. 253-263.
  • A. Paul, The Kirkendall effect in solid state diffusion, Ph.D. thesis, Department of Chemical Engineering and Chemistry 2004.
  • B. Chao, S.-H. Chae, X. Zhang, K. Lu, J. Im, and P. Ho, Investigation of diffusion and electromigration parameters for Cu-Sn intermetallic compounds in pb-free solders using simulated annealing, ActaMaterialia 2007, Vol. 55, pp. 2805-2814.
  • G. Ross, V. Vuorinen, and M. Paulasto-Krockel, Void formation and its impact on cu-sn intermetallic compound formation, Journal of Alloys and Compounds 2016, pp. 677.
  • T. Laurila, A. Paul, V. Vuorinen, and S. Divinski, Thermodynamics, diffusion and the Kirkendall effect in solids 2014, pp. 115-139, Cham: Springer International Publishing.
  • K. Zeng, R. Stierman, T.-C. Chiu, D. Edwards, K. Ano, and K. N. Tu, Kirkendall void formation in eutectic Sn-Pb solder joints on bare cu and its effect on joint reliability, Journal of Applied Physics 2005, Vol. 97.
  • J. Kim, J. Yu, and S. Kim, Effects of sulfide-forming element additions on the Kirkendall void formation and drop impact reliability of cu/sn-3.5ag solder joints, Acta Materialia - ACTA MATER 2009, Vol. 57, pp. 5001-5012.
  • L. Xu, J. H. L. Pang, and F. Che, Impact of thermal cycling on sn-ag-cu solder joints and board-level drop reliability, Journal of Electronic Materials 2008, Vol. 37, pp. 880-886.
  • F. Gao and J. Qu, Calculating the diffusivity of Cu and Sn in Cu3Sn intermetallic by molecular dynamics simulations. Materials Letters 2012, Vol. 73, pp. 92-94.
  • I. A. Blech, Electromigration in thin aluminum films on titanium nitride, J. Appl. Phys. 1976, Vol.47, No.4, pp. 1203-1208.
  • A. B. Freidin and E. N. Vilchevskaya, Chemical affinity tensor in coupled problems of mechanochemistry, in Encyclopedia of Continuum Mechanics, edited by H. Altenbach and A. Öchsner (Springer Berlin Heidelberg, Berlin, Heidelberg, 2019) pp. 1-17.
  • A. Freidin, E. Vilchevskaya, and I. Korolev, Stress-assist chemical reactions front propagation in deformable solids, International Journal of Engineering Science 2014, Vol. 83, pp. 57-75.
  • A. Morozov, S. Khakalo, V. Balobanov, A. Freidin, W. H. Müller, and J. Niiranen, Modeling chemical reaction front propagation by using an isogeometric analysis, Technische Mechanik 2018, Vol. 38, pp. 73-90.
  • J.-Y. Park, T. Lee, W. Seo, S. Yoo, and Y.-H. Kim, Electromigration reliability of Sn-3.0Ag-0.5Cu/Cu-Zn solder joints, Journal of Materials Science: Materials in Electronics 2019, Vol. 30, pp. 7645-7653.
  • M. Poluektov, A. Freidin, and L. Figiel, Modelling stress-affected chemical reactions in non-linear viscoelastic solids with application to lithiation reaction in spherical Si particles, International Journal of Engineering Science 2018, Vol. 128, pp. 44-62.
  • A. Morozov, A. B. Freidin, V. A. Klinkov, A. V. Semencha, W. H. Müller, and T. Hauck, Experimental and theoretical studies of Cu-Sn intermetallic phase growth during high-temperature storage of eutectic snag interconnects, Journal of Electronic Materials 2020.
  • A. Morozov, A. Freidin, W. H. Müller, A. Semencha, and M. Tribunskiy, Modeling temperature dependent chemical reaction of intermetallic compound growth, in 2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE 2019) pp. 1-8.
  • P. Glansdorff, I. Prigogine, and R. N. Hill, Thermodynamic theory of structure, stability and fluctuations, American Journal of Physics 1973, Vol. 41, pp. 147-148.
  • A. B. Freidin, Chemical affinity tensor and stress-assist chemical reactions front propagation in solids, in Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, Vol. 9 (American Society of Mechanical Engineers, 2013) p. V009T10A102
  • K. N. Tu, Fundamentals of electromigration, in Springer Series in Materials Science, Springer Series in Materials Science, Springer Verlag 2007, pp. 211-243.
  • C. Chen, H. Tong, and K. Tu, Electromigration and thermomigration in Pb-free flip-chip solder joints, Annual Review of Materials Research 2010, Vol. 40, pp. 531-555.
  • A. G. Knyazeva, Cross effects in solid media with diffusion, Journal of Applied Mechanics and Technical Physics 2003, Vol. 44.3, pp. 373-384.
  • J. R. Black, Electromigration—a brief survey and some recent results, IEEE Transactions on Electron Devices 1969, Vol. 16, pp. 338-347.
  • R. Rosenberg and M. Ohring, Void formation and growth during electromigration in thin films. Journal of Applied Physics 1971, Vol. 42(13), pp. 5671-5679.
  • J. P. Hirth and W. D. Nix, Analysis of cavity nucleation in solids subjected to external and internal stresses. Acta Metallurgica 1985, Vol. 33(3), pp. 359-368.
  • C. Basaran and M. Lin, Damage mechanics of electromigration in microelectronics copper interconnects, Intl. J. Materials and Structural Integrity 2007, Vol. 1, pp. 16-39.
  • H. Ceric, R. L. de Orio, J. Cervenka, and S. Selberherr, A comprehensive TCAD approach for assessing electromigration reliability of modern interconnects, IEEE Trans. Mat. Dev. Rel. 2009, Vol. 9, No. 1, pp. 9-19.
  • R. V. Goldstein, M. E. Sarychev, D. B. Shirabaikin, A. S. Vladimirov, Y. V. Zhitnikov, Modeling of electromigration and the void nucleation in thin-film interconnects of integrated circuits. International Journal of Fracture. 2001, Vol. 109, pp. 91-121.
  • R. Kirchheim, Stress and electromigration in Al-lines of integrated circuits, Acta Metall. Mater. 1992, Vol. 40, No. 2, pp. 309-323.
  • K. Weinberg, T. Böhme, and W. H. Müller, Kirkendall voids in the intermetallic layers of solder joints in MEMS. Computational Materials Science 2009, Vol. 45(3), pp. 827-831
  • K. Weinberg and T. Böhme, Condensation and growth of Kirkendall voids in intermetallic compounds. IEEE Transactions on Components and Packaging Technologies 2009, Vol. 32(3), pp. 684-692.
  • K. Weinberg, T., Böhme, Mesoscopic modeling for continua with pores. Dynamic void growth in viscoplastic materials. Journal of Non-Equilibrium Thermodynamics 2008, Vol. 33(1), pp. 25-45.
  • A. M. Cuitino, and M. Ortiz, Ductile fracture by vacancy condensation in f.c.c. single crystals. Acta Materialia 1996, Vol. 44(2), pp. 427-436.
  • R. Kirchheim and U. Kaeber, Atomistic and computer modeling of metallization failure of integrated circuits by electro-migration. Journal of Applied Physics 1991, Vol. 70(1), pp. 172-181.
  • V.I. Levitas and H. Attariani, Mechanochemical continuum modeling of nanovoid nucleation and growth in reacting nanoparticles. The Journal of Physical Chemistry 2011, Vol. 116(1), pp. 54-62.
  • Fischer, F. D., Svoboda, J. Void growth due to vacancy supersaturation - A non-equilibrium thermodynamics study, Scripta Materialia 2008, Vol. 58(2), pp. 93-95
  • H. Ceric and S. Selberherr, Electromigration modeling for interconnect structures in microelectronics, ECS Transactions 2007, Vol. 9 (1), pp. 295-304.
  • Y.E. Gegusin. Diffusion Zone, Nauka, Moscow, (1979), in Russian.
Еще
Статья научная