Ontology-Alignment Techniques: Survey and Analysis

Автор: Fatima Ardjani, Djelloul Bouchiha, Mimoun Malki

Журнал: International Journal of Modern Education and Computer Science (IJMECS) @ijmecs

Статья в выпуске: 11 vol.7, 2015 года.

Бесплатный доступ

The ontology alignment consists in generating a set of correspondences between entities. These entities can be concepts, properties or instances. The ontology alignment is an important task because it allows the joint consideration of resources described by different ontologies. This paper aims at counting all works of the ontology alignment field and analyzing the approaches according to different techniques (terminological, structural, extensional and semantic). This can clear the way and help researchers to choose the appropriate solution to their issue. They can see the insufficiency, so that they can propose new approaches for stronger alignment. They can also adapt or reuse alignment techniques for specific research issues, such as semantic annotation, maintenance of links between entities, etc.

Еще

Ontology Alignment, Terminological Method, Structural Method, Extensional Method, Semantic Method

Короткий адрес: https://sciup.org/15014814

IDR: 15014814

Список литературы Ontology-Alignment Techniques: Survey and Analysis

  • Albagli, S.Ben-Eliyahu-Zohary, R.Shimony, S.E.: Markov network based ontology matching. J. Comput. Syst. Sci. 78(1), 105–118, (2012).
  • Algergawy, A., Nayak, R., Siegmund, N., Köppen, V. and Saake, G.: Combining schema and levelbased matching for web service discovery. In: Proc. 10th International Conference on Web Engineering (ICWE), Vienna, Austria, pp. 114–128, (2010).
  • Bach, T.-L., Dieng-Kuntz, R. and Gandon, F.: On ontology matching problems (for building a corporate semantic web in a multi-communities organization). In: Proc. 6th International Conference on Enterprise Information Systems (ICEIS), Porto, Portugal, pp. 236–243 (2004).
  • Berlin, J. and Motro, A.: Database schema matching using machine learning with feature selection. In: Proc. 14th International Conference on Advanced Information Systems Engineering (CAiSE), Toronto, Canada. Lecture Notes in Computer Science, vol. 2348, pp. 452–466, (2002).
  • Bilke, A. and Naumann, F.: Schema matching using duplicates. In: Proc. 21st International Conference on Data Engineering (ICDE), Tokyo, Japan, pp. 69–80, (2005).
  • Bock, J. and Hettenhausen, J.: Discrete particle swarm optimisation for ontology alignment. Inf. Sci. 192, 152–173, (2012).
  • Bouquet, P., Serafini, L., Zanobini, S. and Sceffer, S.: Bootstrapping semantics on the web: meaning elicitation from schemas. In: Proc. 15th International World Wide Web Conference (WWW), Edinburgh, UK, pp. 505–512, (2006).
  • Chang, K., He, B. and Zhang, Z.: Toward large scale integration: building a metaquerier over databases on the web. In: Proc. 2nd Biennial Conference on Innovative Data Systems Research (CIDR), Asilomar, CA, USA, pp. 44–55, (2005).
  • Clifton, C., Hausman, E. and Rosenthal, A.: Experience with a combined approach to attribute matching across heterogeneous databases. In: Proc. 7th IFIP Conference on Database Semantics, Leysin, Switzerland, pp. 428–453, (1997).
  • Corrales, J.C., Grigori, D., Bouzeghoub, M.and Burbano, J.E.: BeMatch: a platform for matchmaking service behavior models. In: Proc. 11th International Conference on Extending Database Technology (EDBT), Nantes, France, pp. 695–699, (2008).
  • Cruz, I., Antonelli, F.P. and Stroe, C.: AgreementMaker: efficient matching for large real-world schemas and ontologies. Proc. VLDB Endow. 2(2), 1586–1589, (2009).
  • David, J., Guillet, F. and Briand, H.: Matching directories and OWL ontologies with AROMA. In: Proc. 15th ACM Conference on Information and Knowledge Management (CIKM), Arlington, VA, USA, pp. 830–831, (2006).
  • Dhamankar, R., Lee, Y., Doan, A.-H., Halevy, A. and Domingos, P.: iMAP: discovering complex semantic matches between database schemas. In: Proc. 23rd International Conference on Management of Data (SIGMOD), Paris, France, pp. 383–394, (2004).
  • Djeddi, W. and Khadir, M.-T.: XMapGen and XMapSiG results for OAEI 2013. In Proceedings of the 8th International Workshop on Ontology Matching co-located with the 12th International Semantic Web Conference (ISWC 2013), pp. 203–210. Sydney, Australia, October 21, (2013).
  • Djeddi, W. and Khadir, M. T.: XMap++: Results for OAEI 2014. In Proceedings of the 9th International Workshop on Ontology Matching collocated with the 13th International Semantic Web Conference (ISWC 2014). Riva del Garda, Trentino, Italy, October 20, (2014).
  • Do, H.-H. and Rahm, E.: COMA—a system for flexible combination of schema matching approaches. In: Proc. 28th International Conference on Very Large Data Bases (VLDB), Hong Kong, China,pp. 610–621, (2002).
  • Doan, A.-H., Domingos, P. and Halevy, A.: Reconciling schemas of disparate data sources: a machinelearning approach. In: Proc. 20th International Conference on Management of Data (SIGMOD), Santa Barbara, CA, USA, pp. 509–520, (2001).
  • Doan, A.-H., Madhavan, J., Domingos, P. and Halevy, A.: Ontology matching: a machine learning approach. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 385–404. Springer, Berlin, (2004).
  • Dieng, R. and Hug, S.: Comparison of -personal ontologies- represented through conceptual graphs. In Proc. 13th ECAI, Brighton (UK), pp. 341–345, (1998).
  • Doan, A., Domingos, P. and Halevy, A.: Learning source descriptions for data Integration. In: ProcWebDBWorkshop, pp. 81–92, (2000).
  • Doan, A., Madhavan, J., Domingos, P. and Halevy, A.: Learning to Map between Ontologies on the Semantic Web. The 11th International World Wide Web Conference (WWW'2002), Hawaii, USA, (2002).
  • Do, H.-H. and Rahm, E.: Matching large schemas: Approaches and evaluation. Information Systems, Volume32, Issue 6, pp. 857-885, September (2007)
  • Doshi, P., Kolli, R. and Thomas, C.: Inexact matching of ontology graphs using expectationmaximization. J. Web Semant. 7(2), 90–106, (2009).
  • Duchateau, F., Bellahsene, Z. and Coletta, R.: A flexible approach for planning schema matching algorithms. In: Proc. 16th International Conference on Cooperative Information Systems (CoopIS), Monterrey, Mexico. Lecture Notes in Computer Science, vol. 5331, pp. 249–264, (2008).
  • Duchateau, F., Coletta, R., Bellahsene, Z. and Miller, R.: (not) Yet Another Matcher. In: Proc. 18th ACM Conference on Information and Knowledge Management (CIKM), Hong Kong, China, pp. 1537–1540, (2009).
  • Ehrig, M. and Sure, Y.: Ontology mapping—an integrated approach. In: Proc. 1st European Semantic Web Symposium (ESWS), Hersounisous, Greece. Lecture Notes in Computer Science, vol. 3053, pp. 76–91, (2004).
  • Ehrig, M. and Staab, S.: QOM—quick ontology mapping. In: Proc. 3rd International Semantic Web Conference (ISWC), Hiroshima, Japan. Lecture Notes in Computer Science, vol. 3298, pp. 683–697, (2004).
  • Esposito, F., Fanizzi, N. and d'Amato, C.: Recovering uncertain mappings through structural validation and aggregation with the MoTo system. In: Proc. 25th ACM Symposium on Applied Computing (SAC), Sierre, Switzerland, pp. 1428–1432, (2010).
  • Euzenat, J.: Brief overview of T-tree: the Tropes Taxonomy building Tool. In: Proc. 4th ASIS SIG/CRWorkshop on Classification Research, Columbus, OH, USA, pp. 69–87, (1994).
  • Euzenat, J. and Valtchev, P.: Similarity-based ontology alignment in OWL-lite. In: Proc. 16th European Conference on Artificial Intelligence (ECAI), Valencia, Spain, pp. 333–337, (2004).
  • Euzenat, J. and Shvaiko, P.: Ontology matching. Springer, Heidelberg (DE), (2007).
  • Schadd, F.-C. and Roos, N.: Alignment Evaluation of MaasMatch for the OAEI 2014 Campaign. In Proceedings of the 9th International Workshop on Ontology Matching collocated with the 13th International Semantic Web Conference (ISWC 2014). Riva del Garda, Trentino, Italy, October 20, (2014).
  • Giunchiglia, F. and Shvaiko, P.: Semantic matching. Knowl. Eng. Rev. 18(3), 265–280, (2003).
  • Giunchiglia, F., Shvaiko, P. and Yatskevich, M.: S-Match: an algorithm and an implementation of semantic matching. In Proceedings of ESWS 2004, Heraklion (GR), pp. 61–75, (2004).
  • Giunchiglia, F., Shvaiko, P. and Yatskevich, M.: Discovering missing background knowledge in ontology matching. In Proc. 16th European Conference on Artificial Intelligence (ECAI), pages 382–386, Riva del Garda (IT), (2006).
  • Gracia, J., Bernad, J. and Mena, E.: Ontology matching
  • with CIDER: evaluation report for OAEI 2011. In: Proc. 6th International Workshop on Ontology Matching (OM) at the 10th International Semantic Web Conference (ISWC), Bonn, Germany, pp. 126–133, (2011).
  • Haeri (Hossein), S., Abolhassani, H., Qazvinian, V. and Hariri, B.-B.: Coincidence-based scoring of mappings in ontology alignment. J. Adv. Comput. Intell. Intell. Inform. 11(7), 803–816, (2007).
  • Hamdi, F., Reynaud, C. and Safar, B.: Pattern-based mapping refinement. In: Proc. 17th International Conference on Knowledge Engineering and Knowledge Management (EKAW), Lisbon, Portugal. Lecture Notes in Computer Science, vol. 6317, pp. 1–15, (2010).
  • Hanif, M.-S. and Aono, M.: An efficient and scalable algorithm for segmented alignment of ontologies of arbitrary size. J. Web Semant. 7(4), 344–356, (2009).
  • Hu, W., Qu, Y. and Cheng, G.: Matching large ontologies: a divide-and-conquer approach. Data Knowl. Eng. 67(1), 140–160, (2008).
  • Hovy, E.: Combining and standardizing large-scale, practical ontologies for machine translation and other uses. In: Proc. 1st International Conference on Language Resources and Evaluation (LREC), Granada, Spain, pp. 535–542, (1998).
  • Ichise, R., Takeda, H. and Honiden, S.: Integrating multiple Internet directories by instance-based learning. In: Proc. 18th International Joint Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico, pp. 22–30, (2003).
  • Jain, P., Hitzler, P., Sheth, A., Verma, K. and Yeh, P.: Ontology alignment for linked open data. In: Proc. 9th International Semantic Web Conference (ISWC), Shanghai, China. Lecture Notes in Computer Science, vol. 6496, pp. 401–416, (2010).
  • James, N., Todorov, K. and Hudelot, C.: Combining visual and textual modalities for multimedia ontology matching. In: Proc. 5th International Conference on Semantic and Digital Media Technologies (SAMT), Saarbrücken, Germany. Lecture Notes in Computer Science, vol. 6725, pp. 95–110, (2010).
  • Jaroszewicz, S., Ivantysynova, L. and Scheffer, T.: Schema matching on streams with accuracy guarantees. Intell. Data Anal. 12(3), 253–270, (2008).
  • Ji, Q., Liu, W., Qi, G. and Bell, D.: LCS: a Linguistic Combination System for ontology matching. In: Proc. 1st International Conference on Knowledge Science, Engineering and Management (KSEM), Guilin, China, pp. 176–189, (2006).
  • Jiménez-Ruiz, E., Grau, B.-C., Horrocks, I. and Berlanga, R.: Ontology integration using mappings: towards getting the right logical consequences. In: Proc. 6th European Semantic Web Conference (ESWC), Hersounisous, Greece. Lecture Notes in Computer Science, vol. 5554, pp. 173–188, (2009).
  • Jiménez-Ruiz, E. and Grau, B.-C.: LogMap: logic-based and scalable ontology matching. In: Proc. 10th International Semantic Web Conference (ISWC), Bonn, Germany. Lecture Notes in Computer Science, vol. 7031, pp. 273–288, (2011).
  • Jiménez-Ruiz, E., Grau, B.-C., Zhou, Y. and Horrocks, I.: Large-scale interactive ontology matching: algorithms and implementation. In: Proc. 20th European Conference on Artificial Intelligence (ECAI), Montpellier, France, pp. 444–449, (2012).
  • Lee, M.-L., Yang, L.-H., Hsu, W. and Yang, X.: XClust: clustering XML schemas for effective integration. In: Proc. 11th International Conference on Information and Knowledge Management (CIKM), McLean, VA, USA, pp. 292–299, (2002).
  • Lambrix, P. and Tan, H.: SAMBO—a system for aligning and merging biomedical ontologies. J. Web Semant. 4(1), 196–206, (2006).
  • Li, W.-S. and Clifton, C.: Semantic integration in heterogeneous databases using neural networks. In: Proc. 20th International Conference on Very Large Data Bases (VLDB), Santiago, Chile, pp. 1–12, (1994).
  • Kalfoglou, Y. and Schorlemmer, M.: IF-Map: an ontology mapping method based on information flow theory. J. Data Semant. I, 98–127, (2003).
  • Kang, J. and Naughton, J.: On schema matching with opaque column names and data values. In: Proc. 22nd International Conference on Management of Data (SIGMOD), San Diego, CA, USA, pp. 205–216, (2003).
  • Kensche, D., Quix, C., Chatti, M.-A. and Jarke, M.: GeRoMe: a Generic Role-based Metamodel for model management. J. Data Semant. VIII, 82–117, (2007).
  • Khiat, A. and Benaissa, M.: AOT / AOTL Results for OAEI 2014. In Proceedings of the 9th International Workshop on Ontology Matching collocated with the 13th International Semantic Web Conference (ISWC 2014). Riva del Garda, Trentino, Italy, October 20, (2014).
  • Khiat, A. and Benaissa, M.: InsMT / InsMTL results for OAEI 2014 instance matching. In Proceedings of the 9th International Workshop on Ontology Matching collocated with the 13th International Semantic Web Conference (ISWC 2014). Riva del Garda, Trentino, Italy, October 20, (2014).
  • Madhavan, J., Bernstein, P., Doan, A.-H. and Halevy, A.: Corpus-based schema matching. In: Proc. 21st International Conference on Data Engineering (ICDE), Tokyo, Japan, pp. 57–68, (2005).
  • Maio, P. and Silva, N.: GOALS: a test-bed for ontology matching. In: Proc. 1st International Conference on Knowledge Engineering and Ontology Development (KEOD), Madeira, Portugal, pp. 293–299 (2009).
  • Mao, M., Peng, Y. and Spring, M.: An adaptive ontology mapping approach with neural network based constraint satisfaction. J. Web Semant. 8(1), 14–25, (2010).
  • Marie, A. and Gal, A.: Boosting schema matchers. In: Proc. 16th International Conference on Cooperative Information Systems (CoopIS), Monterrey, Mexico. Lecture Notes in Computer Science, vol. 5331, pp. 283–300, (2008).
  • Mascardi, V., Locoro, A. and Rosso, P.: Automatic ontology matching via upper ontologies: a systematic evaluation. IEEE Trans. Knowl. Data Eng. 22(5), 609–623, (2010).
  • Melnik, S., Garcia Molina, H. and Rahm, E.: Similarity flooding: a versatile graph matching algorithm. In: Proc. 18th International Conference on Data Engineering (ICDE), San Jose, CA, USA, pp. 117–128, (2002).
  • Mitra, P., Noy, N. and Jaiswal, A.: Ontology mapping discovery with uncertainty. In: Proc. 4th International Semantic Web Conference (ISWC), Galway, Ireland. Lecture Notes in Computer Science, vol. 3729, pp. 537–547, (2005).
  • Nagy, M. and Vargas-Vera, M.: Towards an automatic semantic data integration: multi-agent framework approach. In: Wu, G. (ed.) Semantic Web, pp. 107–134. In-Teh, Vukovar, (2010).
  • Nandi, A. and Bernstein, P.: HAMSTER: using search clicklogs for schema and taxonomy matching. Proc. VLDB Endow. 2(1), 181–192, (2009).
  • Niepert, M., Meilicke, C. and Stuckenschmidt, H.: A probabilistic-logical framework for ontology matching. In: Proc. 24th Conference on Artificial Intelligence (AAAI),
  • Atlanta, GA, USA, pp. 1413–1418, (2010).
  • Noy, N. and Musen, M.: Anchor-PROMPT: Using non-local context for semantic matching. In Proc. IJCAI 2001 workshop on ontology and information sharing, Seattle (WA US), pp. 63–70, (2001).
  • Oundhakar, S., Verma, K., Sivashanugam, K., Sheth, A. and Miller, J.: Discovery of web services in a multi-ontology and federated registry environment. Int. J. Web Serv. Res. 2(3), 1–32, (2005).
  • Pan, R., Ding, Z., Yu, Y. and Peng, Y.: A Bayesian network approach to ontology mapping. In: Proc. 4th International Semantic Web Conference (ISWC), Galway, Ireland. Lecture Notes in Computer Science, vol. 3729, pp. 563–577, (2005).
  • Parmentier, G., Bastian, F. and Robinson-Rechavi, M.: Homolonto: generating homology relationships by pairwise alignment of ontologies and application to vertebrate anatomy. Bioinformatics 26(14), 1766–1771, (2010).
  • Peukert, E., Eberius, J. and Rahm, E.: AMC: a framework for modelling and comparing matching systems as matching processes. In: Proc. 27th International Conference on Data Engineering (ICDE), Hannover, Germany, pp. 1304–1307 (2011).
  • Peukert, E., Eberius, J. and Rahm, E.: A self-configuring schema matching system. In: Proc. 28th International Conference on Data Engineering (ICDE), Washington, DC, USA, pp. 306–317, (2012).
  • Sabou, M., d'Aquin, M. and Motta, E.: Exploring the semantic web as background knowledge for ontology matching. J. Data Semant. XI, 156–190, (2008)
  • Saleem, K., Bellahsene, Z. and Hunt, E.: PORSCHE: Performance ORiented SCHEma mediation. Inf. Sci. 33(7–8), 637–657, (2008).
  • Sayyadian, M., Lee, Y., Doan, A.-H. and Rosenthal, A.: Tuning schema matching software using synthetic scenarios. In: Proc. 31st International Conference on Very Large Data Bases (VLDB), Trondheim, Norway, pp. 994–1005, (2005).
  • Shao, C., Hu, L. and Li, J.: RiMOM-IM results for OAEI 2014. In Proceedings of the 9th International Workshop on Ontology Matching collocated with the 13th International Semantic Web Conference (ISWC 2014). Riva del Garda, Trentino, Italy, October 20, (2014).
  • Straccia, U. and Troncy, R.: oMAP: combining classifiers for aligning automatically OWL ontologies. In: Proc. 6th International Conference on Web Information Systems Engineering (WISE), New York, NY, USA, pp. 133–147, (2005).
  • Stroulia, E. and Wang, Y.: Structural and semantic matching for assessing web-service similarity. Int. J. Coop. Inf. Syst. 14(4), 407–438, (2005).
  • Su, W.,Wang, J. and Lochovsky, F.: Holistic schema matching for web query interfaces. In: Proc. 10th Conference on Extending Database Technology (EDBT), Munich, Germany. Lecture Notes in Computer Science, vol. 3896, pp. 77–94, (2006).
  • Suchanek, F., Abiteboul, S. and Senellart, P.: PARIS: Probabilistic Alignment of Relations, Instances, and Schema. Proc. VLDB Endow. 5(3), 157–168, (2012).
  • Spiliopoulos, V., Vouros, G. and Karkaletsis, V.: On the discovery of subsumption relations for the alignment of ontologies. J. Web Semant. 8(1), 69–88, (2010).
  • Tang, J., Li, J., Liang, B., Huang, X., Li, Y. and Wang, K.: Using Bayesian decision for ontology mapping. J. Web Semant. 4(1), 243–262, (2006).
  • Tournaire, R., Petit, J.-M., Rousset, M.-C. and Termier, A.: Discovery of probabilistic mappings between taxonomies: principles and experiments. J. Data Semant. XV, 66–101, (2011).
  • Thayasivam, U. and Doshi, P.: Optima results for OAEI 2011. In: Proc. 6th International Workshop on Ontology Matching (OM) at the 10th International Semantic Web Conference (ISWC), Bonn, Germany, pp. 204–211, (2011).
  • Thayasivam, U. and Doshi, P.: Improved convergence of iterative ontology alignment using blockcoordinate descent. In: Proc. 26th Conference on Artificial Intelligence (AAAI), Toronto, Canada, pp. 150–156, (2012).
  • Udrea, O., Getoor, L. and Miller, R.: Leveraging data and structure in ontology integration. In: Proc. 26th International Conference on Management of Data (SIGMOD), Beijing, China, pp. 449–460, (2007).
  • Wang, P. and Xu, B.: An effective similarity propagation method for matching ontologies without sufficient or regular linguistic information. In: Proc. 4th Asian SemanticWeb Conference (ASWC), Shanghai, China. Lecture Notes in Computer Science, vol. 5926, pp. 105–119, (2009).
  • Wang, J.,Wen, J.-R., Lochovsky, F. and Ma,W.-Y.: Instance-based schemamatching for web databases by domain-specific query probing. In: Proc. 30th International Conference on Very Large Data Bases (VLDB), Toronto, Canada, pp. 408–419, (2004).
  • Wimmer, M., Seidl, M., Brosch, P., Kargl, H. and Kappel, G.: On realizing a framework for selftuning mappings. In: Proc. 47th International Conference on Technology of Object-Oriented Languages and Systems (TOOLS), Zürich, Switzerland, pp. 1–16, (2009)
  • Wu, W., Yu, C., Doan, A. and Meng, W.: An interactive clustering-based approach to integrating source query interfaces on the deep web. In: Proc. 23rd International Conference on Management of Data (SIGMOD), Paris, France, pp. 95–106, (2004).
  • Xu, L. and Embley, D.: Discovering direct and indirect matches for schema elements. In: Proc. 8th International Conference on Database Systems for Advanced Applications (DASFAA), Kyoto, Japan, pp. 39–46, (2003)
  • Zhang, S. and Bodenreider, O.: Experience in aligning anatomical ontologies. Int. J. Semantic Web Inf. Syst. 3(2), 1–26, (2007).
  • Shvaiko P., Euzenat J. « A survey of schema-based matching approaches », Journal on Data Semantics, 2005, vol. 4, p. 146–171.
  • Rahm E., Bernstein P. « A survey of approaches to automatic schema matching », The International Journal on Very Large Data Bases, VLDB, 2001, vol. 10, n 4, 334–350.
  • Kalfoglou Y., Schorlemmer M. « Ontology mapping: the state of the art », The Knowledge Engineering Review Journal, KER, 2003, vol. 18, n 1, p.1–31.
Еще
Статья научная