Определение категории устойчивости для распределенных автоматизированных систем управления
Автор: А.А. Толмачев, М.А. Прохоров, А.С. Андрианов
Журнал: Космические аппараты и технологии.
Рубрика: Ракетно-космическая техника
Статья в выпуске: 1, 2018 года.
Бесплатный доступ
В настоящее время космические системы и средства стали одним из основных инструментов обеспечения боевой и повседневной деятельности вооруженных сил развитых государств мира. В современных условиях космические системы встают в ряд стратегических компонент, устойчивость функционирования которых критична для сохранения военно-стратегического равновесия. Анализ конфликтов последних десятилетий показал тенденцию к смещению противоборства в космическую сферу и киберпространство. Космические системы и средства позволяют существенно повысить боевые возможности войск, а государство, не обладающее возможностью использования средств вооруженной борьбы, размещенных в воздушно-космической сфере, или допустившее просчеты в политике развития и использования своих космических систем и средств, будет обречено на гарантированное поражение в будущих военных конфликтах. Обороноспособность и безопасность Российской Федерации непосредственно зависят от состояния и возможностей средств стратегического предупреждения о подготовке к агрессии, начале ракетно-ядерного нападения, а также качества всестороннего обеспечения космическими силами и средствами армии и флота в мирное и военное время. В связи с этим появилась необходимость осуществить корректировку содержания категории устойчивости функционирования распределенных автоматизированных систем управления.
Требование, устойчивость, разведзащищенность, распределенная автоматизированная система управления, космические системы, информационное противоборство, космические средства
Короткий адрес: https://sciup.org/14114751
IDR: 14114751 | DOI: 10.26732/2618-7957-2018-1-17-21
Список литературы Определение категории устойчивости для распределенных автоматизированных систем управления
- Российский Институт Стратегических Исследований [Электронный ресурс]. – Режим доступа: http//riss.ru.
- Чащин С. В., Вечеркин В. Б., Гончаров А. М. Алгоритм оценивания живучести комплексов систем автоматизации и его элементов в условиях деструктивных воздействий // Телекоммуникационные технологии. 2016. № 14. С. 122–125.
- Мануйлов Ю. С., Петушков А. М., Новиков Е. А. Управление целевым применением космической навигационной системы по технологии гибких стратегий. СПб. : ВКА имени А. Ф. Можайского. 2007. 176 с.
- Прохоров М. А. Оценивание устойчивости центра управления полетом космических аппаратов в условиях деструктивных воздействий // Труды II Межвузовской научно-практической конференции «Проблемы технического обеспечения войск в современных условиях». СПб., 2017. С. 160–163.
- Иванов А. К. Проектирование устойчивой АСУ : учеб. пособие. Ульяновск : УлГТУ, 2002. 144 с.
- Артюхов В. В. Общая теория систем: самоорганизация, устойчивость, разнообразие, кризисы. М. : Книжный дом «ЛИБРОКОМ», 2009. 224 с.
- Макаренко С. И. Информационное оружие в технической сфере: терминология, классификация, примеры // Системы управления, связи и безопасности. 2016. № 3. С. 292–376.
- Макаренко С. И., Иванов М. С., Попов С. А. Помехозащищенность систем связи с псевдослучайной перестройкой рабочей частоты : монография. СПб. : Свое издательство, 2013. 166 с.: ил.
- Коцыняк М. А., Кулешов И. А., Кудрявцев А. М. Киберустойчивость информационно-телекоммуникационной сети. СПб. : Бостон-спектр, 2015. 150 с.
- Евглевская Н. В., Привалов Ан. А., Привалов Ал. А. Модель процесса подготовки злоумышленника к информационному воздействию на автоматизированные системы управления железнодорожным транспортом // Бюллетень результатов научных исследований. 2012. С. 17–25.