Determination of optimal parameters of model for investigation of gas-dynamic processes in flow part of vortex flowmeter via numerical simulation
Автор: Shulev I.S., Safonov E.V.
Рубрика: Расчет и конструирование
Статья в выпуске: 2 т.16, 2016 года.
Бесплатный доступ
The paper presents results of numerical modeling of flow of the vortex flowmeter for the three grids with different number of cells. The essence of the problem to be solved is to determine the influence of the number of grid cells for the geometry of the flow on the accuracy of the simulation results, and more specifically on the amplitude-frequency characteristics of a vortex flowmeter. To resolve we use the comparison of numerical calculations for the three types of grids one running and one of the current regime. Numerical simulation of the flow of the vortex flowmeter with flow around the body in the form of a wing, carried out with the help of a supercomputer “SKIF-URAL” on the software ANSYS CFX and Cosmos Flow Simulation. To check the reproducibility calculations carried out on three types of grids containing 2 million. Cells, 6 million. And 18 million cells. The frequency of the oscillations of the vortices obtained by applying the method of frequency analysis based on Fourier expansion for the resulting pressure drop on the wing. Results are presented for the incompressible medium (water) as a dependency of the amplitude-frequency characteristics of the time. The dependence of the accuracy of the numerical simulation results, depending on the amount of grid cells. Analysis of the results indicates a satisfactory agreement between the results of numerical simulation and a data of experiment. Relative error data of numerical modeling does not exceed 9%, and the longest match is obtained on computational grid containing 6 million. Cell and using SST-turbulence model (difference of not more than 2.4%). Comparison of the data of numerical and physical experiments showed satisfactory quantitative agreement. As a working mesh is recommended to take a grid containing 6 million cells and using SST-turbulence model.
Cfd, vortex flowmeter, karman vortex street, simulation of fluid, supercomputer
Короткий адрес: https://sciup.org/147151718
IDR: 147151718 | DOI: 10.14529/engin160205