Оптическая спектроскопия в диагностике раннего остеоартрита (обзор литературы)

Автор: Гончарук Ю.Р., Липина М.М., Лычагин А.В., Тимашев П.С., Вязанкин И.А., Азаркин К.М.

Журнал: Кафедра травматологии и ортопедии @jkto

Рубрика: Обзор литературы

Статья в выпуске: 3 (49), 2022 года.

Бесплатный доступ

На сегодняшний день в медицине активно ведется разработка новых методов клинической, в том числе интраоперационной, диагностики. Существующие на данный момент техники визуализации помогают выявить морфологические особенности, но не предоставляют информацию о клеточном составе и биохимическом состоянии ткани. Тем не менее для решения широкого пула клинических задач необходимо развитие новых методов и разработка приборов, позволяющих быстро и надежно проводить биохимическую диагностику интраартикулярных структур, в частности остеоартрита. Клиническая потребность в аналитических методах, позволяющих выполнять такого рода задачи, обусловлена субъективностью существующих методов диагностики интраартикулярных повреждений.Целью данного обзора является предоставление информации о существующих методах диагностики и определения раннего остеоартрита. Выводы: Оптические методы позволяют проводить анализ биохимического состояния интраартикулярных тканей и дают качественные и воспроизводимые результаты, а также имеют потенциал в использовании артроскопической диагностики. Cпектроскопия диффузного отражения является новым экономически эффективным методом визуализации, который может помочь в ранней диагностике остеоартрита, мониторинге прогрессирования повреждения комплекса хрящ-субхондральная кость и, таким образом, в принятии своевременного и персонифицированного решения относительно тактики лечения.Изменения биохимического состава и морфологические нарушения в суставном хряще, субхондральной кости, а также менисках и связках коленного сустава при прогрессировании ОА нуждаются в дальнейшем систематическом изучении.

Еще

Хрящ, остеоартрит, оптическая спектроскопия, спектроскопия диффузного отражения, интраартикулярные повреждения

Короткий адрес: https://sciup.org/142237443

IDR: 142237443   |   DOI: 10.17238/2226-2016-2022-3-77-89

Список литературы Оптическая спектроскопия в диагностике раннего остеоартрита (обзор литературы)

  • Makovicka JL, Patel KA, Hassebrock JD, Hartigan DE, Wong M, Chhabra A. Arthroscopic Evaluation of Knee Cartilage Using Optical Reflection Spectroscopy. Arthrosc Tech. 2019;8(4):e399-e405. Published 2019 Mar 25. https://doi.org/10.1016/j.eats.2018.11.019
  • Huber, Monika, Siegfried Trattnig, and Felix Lintner. “Anatomy, biochemistry, and physiology of articular cartilage.” Investigative radiology 35.10 (2000): 573-580. https://doi.org/10.1097/00004424-200010000-00003
  • Virtanen, Vesa & Nippolainen, Ervin & Shaikh, Rubina & Afara, Isaac & Töyräs, Juha & Solheim, Johanne & Tafintseva, Valeria & Zimmermann, Boris & Kohler, Achim & Saarakkala, Simo & Rieppo, Lassi. (2021). Infrared Fiber-Optic Spectroscopy Detects Bovine Articular Cartilage Degeneration. CARTILAGE. 194760352199322. https://doi.org/10.1177/1947603521993221
  • Pearle AD, Warren RF, Rodeo SA (2005) Basic science of articular cartilage and osteoarthritis. Clin Sports Med 24(1):1–12. https://doi.org/10.1016/j.csm.2004.08.007
  • van Tiel J, Siebelt M, Reijman M, Bos P, Waarsing J, Zuurmond A-M, Nasserinejad K, van Osch G, Verhaar J, Krestin G (2016) Quantitative in vivo CT arthrography of the human osteoarthritic knee to estimate cartilage sulphated glycosaminoglycan content: correlation with ex-vivo reference standards. Osteoarthr Cartil 24(6):1012–1020. https://doi.org/10.1016/j.joca.2016.01.137
  • Armstrong CG, Mow VC. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Joint Surg Am. 1982;64(1):88-94.
  • Arakawa K, Takahata K, Enomoto S, et al. The difference in joint instability affects the onset of cartilage degeneration or subchondral bone changes [published online ahead of print, 2021 Dec 11]. Osteoarthritis Cartilage. 2021;S1063-4584(21)01001-3. https://doi.org/10.1016/j.joca.2021.12.002
  • Duncan H, Jundt J, Riddle JM, Pitchford W, Christopherson T. The tibial subchondral plate. A scanning electron microscopic study. J Bone Joint Surg Am. 1987;69(8):1212-1220.
  • Muller-Gerbl M, Dalstra M, Ding M, Linsenmeier U, Putz R, Hvid I (1998) Distribution of strength and mineralization in the subchondral bone plate of human tibial heads. J Biomech 31(Suppl 1):123 Proceedings of the 11th conference of the european society of biomechanics. ISSN:0021-9290
  • Stewart H.L., Kawcak C.E. The importance of subchondral bone in the pathophysiology of osteoarthritis. Front Vet Sci. 2018; 5: 1-9. https://doi.org/10.3389/fvets.2018.00178
  • Lyons TJ, Stoddart RW, McClure SF, McClure J (2005) The tidemark of the chondro-osseous junction of the normal human knee joint. J Mol Histol 36:207–215. https://doi.org/10.1007/s10735-005-3283-x
  • Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):419-433. https://doi.org/10.1007/s00167-010-1054-z
  • Inoue H (1981) Alterations in the collagen framework of osteoarthritic cartilage and subchondral bone. Int Orthop 5:47– 52. https://doi.org/10.1007/BF00286099
  • Milz S, Putz R (1994) Quantitative morphology of the subchondral plate of the tibial plateau. J Anat 185(Pt 1):103–110
  • Berry JL, Thaeler-Oberdoerster DA, Greenwald AS (1986) Subchondral pathways to the superior surface of the human talus. Foot Ankle 7:2–9. https://doi.org/10.1177/107110078600700103
  • Lane LB, Villacin A, Bullough PG (1977) The vascularity and remodeling of subchondral bone and calcified cartilage in adult human femoral and humeral heads. An age- and stress-related phenomenon. J Bone Joint Surg Br 59:272–278. https://doi.org/10.1302/0301-620X.59B3.893504
  • Hwang J, Bae WC, Shieu W, Lewis CW, Bugbee WD, Sah RL (2008) Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis. Arthritis Rheum 58:3831–3842. https://doi.org/10.1002/art.24069
  • Arkill KP, Winlove CP (2008) Solute transport in the deep and calcified zones of articular cartilage. Osteoarthr Cartil 16:708– 714. https://doi.org/10.1016/j.joca.2007.10.001
  • Dewire P, Simkin PA (1996) Subchondral plate thickness reflects tensile stress in the primate acetabulum. J Orthop Res 14:838–841. https://doi.org/10.1002/jor.1100140524
  • Newberry WN, Mackenzie CD, Haut RC (1998) Blunt impact causes changes in bone and cartilage in a regularly exercised animal model. J Orthop Res 16:348–354. https://doi.org/10.1002/jor.1100160311
  • van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJG (2010) The natural history of osteochondral lesions in the ankle. JAAOS Instr Course Lect 59
  • Radin EL, Rose RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat R 213:34–40
  • Lories RJ, Luyten FP (2011) The bone–cartilage unit in osteoarthritis. Nat Rev Rheumatol 7(1):43. https://doi.org/10.1038/nrrheum.2010.197
  • Yamada K, Healey R, Amiel D, Lotz M, Coutts R (2002) Subchondral bone of the human knee joint in aging and osteoarthritis. Osteoarthr Cartil 10(5):360–369. https://doi.org/10.1053/joca.2002.0525
  • van der Harst MR, Brama PA, van de Lest CH, Kiers GH, DeGroot J, van Weeren PR (2004) An integral biochemical analysis of the main constituents of articular cartilage, subchondral and trabecular bone. Osteoarthr Cartil 12(9):752–761. https://doi.org/10.1016/j.joca.2004.05.004
  • Roos EM, Arden NK. Strategies for the prevention of knee osteoarthritis. Nat Rev Rheumatol. 2016;12(2):92101. https://doi.org/10.1038/nrrheum.2015.135
  • Sarin J.K. et al. Machine learning augmented near-infrared spectroscopy: In vivo follow-up of cartilage defects. Osteoarthritis and Cartilage. 29 (2021): 423e432. https://doi.org/10.1016/j.joca.2020.12.007
  • Chu C.R., Williams A., Tolliver D., Kwoh C.K., Bruno S., Irrgang J.J. Clinical Optical Coherence Tomography of Early Articular Cartilage Degeneration in Patients With Degenerative Meniscal Tears. Arthritis Rheum. 2010;62:1412–1420. https://doi.org/10.1002/art.27378
  • Madry, H., Kon, E., Condello, V. et al. Early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 24, 1753–1762 (2016). https://doi.org/10.1007/s00167-016-4068-3
  • Culvenor AG, Collins NJ, Guermazi A, et al. Early knee osteoarthritis is evident one year following anterior cruciate ligament reconstruction: a magnetic resonance imaging evaluation. Arthritis Rheumatol. 2015;67(4):946-955. https://doi.org/10.1002/art.39005
  • Madry, H., Luyten, F.P. & Facchini, A. Biological aspects of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 20, 407–422 (2012). https://doi.org/10.1007/s00167-011-1705-8
  • Batsis JA, Germain CM, Vásquez E, Zbehlik AJ, Bartels SJ. Physical Activity Predicts Higher Physical Function in Older Adults: The Osteoarthritis Initiative. J Phys Act Health. 2016;13(1):6-16. https://doi.org/10.1123/jpah.2014-0531
  • Luyten FP, Denti M, Filardo G, Kon E, Engebretsen L. Definition and classification of early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2012;20(3):401-406. https://doi.org/10.1007/s00167-011-1743-2
  • Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377(9783):2115-2126. https://doi.org/10.1016/S0140-6736(11)60243-2
  • Felson DT, Hodgson R (2014) Identifying and treating preclinical and early osteoarthritis. Rheum Dis Clin N Am 40(4):699–710 https://doi.org/10.1016/j.rdc.2014.07.012
  • Ritter SY, Collins J, Krastins B, et al. Mass spectrometry assays of plasma biomarkers to predict radiographic progression of knee osteoarthritis. Arthritis Res Ther. 2014;16(5):456. Published 2014 Oct 7. https://doi.org/10.1186/s13075-014-0456-6
  • Ren P, Niu H, Cen H, Jia S, Gong H, Fan Y. Biochemical and Morphological Abnormalities of Subchondral Bone and Their Association with Cartilage Degeneration in Spontaneous Osteoarthritis. Calcif Tissue Int. 2021;109(2):179-189. https://doi.org/10.1007/s00223-021-00834
  • Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012;51(2):249-257. https://doi.org/10.1016/j.bone.2012.02.012
  • Ryd L, Brittberg M, Eriksson K, et al. Pre-Osteoarthritis: Definition and Diagnosis of an Elusive Clinical Entity. Cartilage. 2015;6(3):156-165. https://doi.org/10.1177/1947603515586048
  • Outerbridge H.K . Osteochondral defects in the knee. A treatment using lateral patella autografts. / H.K.Outerbridge, R.E.Outerbridge, D.E.Smith // Clin. Orthop. Relat. Res. – 2000. –Vol.377. – P.145-151.
  • ICRS Cartilage Injury Evaluation Package //Materials of ICRS. Standards Workshop at Schloss Munchenwieler, Switzerland. 2000.
  • Yulish BS, Montanez J, Goodfellow DB, Bryan PJ, Mulopulos GP, Modic MT. Chondromalacia patellae: assessment with MR imaging. Radiology. 1987;164(3):763-766. https://doi.org/10.1148/radiology.164.3.3615877
  • Marlovits S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: Determination of interobserver variability and correlation to clinical outcome after 2 years. / S.Marlovits, P.Singer, P.Zeller // Eur. J. Radiol. – 2006. – Vol.57(1). – P.16-23. https://doi.org/10.1016/j.ejrad.2005.08.007
  • Saarakkala S., Toyras J., Hirvonen J., Laasanen M.S., Lappalainen R., Jurvelin J.S. Ultrasonic quantitation of superficial degradation of articular cartilage. Ultrasound Med. Biol. 2004;30:783–792. https://doi.org/10.1016/j.ultrasmedbio.2004.03.005
  • Saleem M., Farid M.S., Saleem S., Khan M.H. X-ray image analysis for automated knee osteoarthritis detection. Signal. Image Video Process. 2020;14:1079–1087. https://doi.org/10.1007/s11760-020-01645-z
  • Nasnikova I.Yu., Morozov S.P., Filisteev P.A. MAGNETIC RESONANCE IMAGING: METHODS FOR QUANTITATIVE ASSESSMENT OF THE STATE OF THE ARTicular Cartilage IN PATIENTS WITH OSTEOARTHRITIS RUSSIAN ELECTRONIC JOURNAL OF RADIOLOGY Volume 1 No. 3 2011. Page 75 . (In Russian)
  • David-Vaudey E, Ghosh S, Ries M, Majumdar S. T2 relaxation time measurements in osteoarthritis. Magnetic Resonance Imaging. 2004;22(5):673–682 https://doi.org/10.1016/j.mri.2004.01.071
  • Amin, Shreyasee, et al. The relationship between cartilage loss on magnetic resonance imaging and radiographic progression in men and women with knee osteoarthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology 52.10 (2005): 3152-3159. https://doi.org/10.1002/art.21296
  • Zhang X.M., Tong H.Y., Zhang J., Xu J.Y., Xia S.Y. Diagnostic Value of 3.0T MRI in Cartilage Injury Grading of Knee Osteoarthritis. J. Med. Imaging Health Inform. 2020;10:2979–2984. https://doi.org/10.1166/jmihi.2020.3247
  • Spahn G, Klinger HM, Hofmann GO. How valid is the arthroscopic diagnosis of cartilage lesions? Results of an opinion survey among highly experienced arthroscopic surgeons. Arch Orthop Trauma Surg 2009;129:1117-1121. https://doi.org/10.1007/s00402-009-0868-y
  • Friemert B., Oberlander Y., Schwarz W.et al. Diagnosis of chondral lesions of the knee joint: can MRI replace arthroscopy? a prospective study // Knee Surgery, Sports Traumatology, Arthroscopy. 2004. Т. 12. № 1. С. 58-64. https://doi.org/10.1007/s00167-003-0393-4
  • Olumegbon, Ismail Adewale, Adekunle Oloyede, and Isaac Oluwaseun Afara. Near-infrared (NIR) spectroscopic evaluation of articular cartilage: A review of current and future trends. Applied Spectroscopy Reviews 52.6 (2017): 541-559. https://doi.org/10.1080/05704928.2016.1250010
  • Ma D.Y., Zhao Y., Shang L.W., Zhu Y.K., Fu J.J., Lu Y.F., Yin J.H. Research Progress of Raman Spectroscopy Application for Articular Cartilage and Osteoarthritis. Spectrosc. Spect. Anal. 2020;40:2029–2034. https://doi.org/10.3964/j.issn.1000-0593(2020)07-2029-06
  • Niemelä, T., Virén, T., Liukkonen, J. et al. Application of optical coherence tomography enhances reproducibility of arthroscopic evaluation of equine joints. Acta Vet Scand 56, 3 (2014). https://doi.org/10.1186/1751-0147-56-3
  • O’Malley MJ, Chu CR. Arthroscopic optical coherence tomography in diagnosis of early arthritis. Minim Invasive Surg. 2011;2011:671308. https://doi.org/10.1155/2011/671308 Epub 2011 Apr 3. PMID: 22091362; PMCID: PMC3197177.
  • Hofmann, Gunther O., et al. Detection and evaluation of initial cartilage pathology in man: A comparison between MRT, arthroscopy and near-infrared spectroscopy (NIR) in their relation to initial knee pain. Pathophysiology 17.1 (2010): 1-8. https://doi.org/10.1016/j.pathophys.2009.04.001
  • Spahn G, Plettenberg H, Nagel H, Kahl E, Klinger HM, Mückley T, et al. Evaluation of cartilage defects with near-infrared spectroscopy (NIR): an ex vivo study. Med Eng Phys. 2008;30(3):285–92. https://doi. org/10.1016/j.medengphy.2007.04.009
  • Lu L, Cai J, Frost RL. Near infrared spectroscopy of stearic acid adsorbed on montmorillonite. Spectrochim Acta A Mol Biomol Spectrosc. 2010;75(3):960–3. https://doi.org/10.1016/j.saa.2009.12.001
  • Afara I, Prasadam I, Crawford R, Xiao Y, Oloyede A. Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation to Mankin score. Osteoarthritis Cartilage. 2012;20(11):1367–73. https://doi.org/10.1016/j.joca.2012.07.007
  • Samuel D, Park B, Sohn M, Wicker L. Visible-near-infrared spectroscopy to predict water-holding capacity in normal and pale broiler breast meat. Poult Sci. Oxford University Press; 2011;90(4):914–21. https://doi.org/10.3382/ps.2010-01116
  • Lihong V.W., Song H. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012; 335: 1458-1462 https://doi.org/10.1126/science.1216210
  • Shrestha B., Deluna F., Anastasio M.A., Yong Ye J., Brey E.M. Photoacoustic imaging in tissue engineering and regenerative medicine. Tissue Eng B Rev. 2020; 26: 79-102. https://doi.org/10.1089/ten.TEB.2019.0296
  • Wu, M. et al. Spectroscopic photoacoustic imaging of cartilage damage. Osteoarthritis and Cartilage, 2021. Volume 29, Issue 7, 1071 – 1080 https://doi.org/10.1016/j.joca.2021.04.001
  • Brittberg M, Winalski CS, Curl W, Recht M, Potter H, Brittberg M, et al. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am. The American Orthopedic Association; 2003:58–69. https://doi.org/10.2106/00004623-200300002-00008
  • Gunaratne, Rajitha, et al. Human joint tissue identification by employing diffuse reflectance and auto-fluorescence spectroscopy, in combination with machine learning. The European Conference on Lasers and Electro-Optics. Optical Society of America, 2017. https://doi.org/10.1109/CLEOE-EQEC.2017.8087742
  • Ewerlöf, Maria, Marcus Larsson, and E. Göran Salerud. Spatial and temporal skin blood volume and saturation estimation using a multispectral snapshot imaging camera. Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XV. Vol. 10068. International Society for Optics and Photonics, 2017. https://doi.org/10.1117/12.2251928
  • Zonios, George, Julie Bykowski, and Nikiforos Kollias. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. Journal of Investigative Dermatology 117.6 (2001): 1452-1457. https://doi.org/10.1046/j.0022-202x.2001.01577.x
  • Johansson, Anders, et al. A spectroscopic approach to imaging and quantification of cartilage lesions in human knee joints. Physics in Medicine & Biology 56.6 (2011): 1865. https://doi.org/10.1088/0031-9155/56/6/021
  • Wallace, Michael B., et al. Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy. Gastroenterology 119.3 (2000): 677-682. https://doi.org/10.1053/gast.2000.16511
  • Gunaratne, Rajitha, et al. Machine learning classification of human joint tissue from diffuse reflectance spectroscopy data. Biomedical optics express 10.8 (2019): 3889-3898. https://doi.org/10.1364/BOE.10.003889
  • Yaroslavsky, A. N., et al. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Physics in Medicine & Biology 47.12 (2002): 2059-73. https://doi.org/10.1088/0031-9155/47/12/305
  • Wilson, Robert H., et al. Optical spectroscopy detects histological hallmarks of pancreatic cancer. Optics express 17.20 (2009): 17502-17516. https://doi.org/10.1364/OE.17.017502
  • Salomatina, Elena Vladimirovna, et al. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. Journal of biomedical optics 11.6 (2006): 064026. https://doi.org/10.1117/1.2398928
  • Kreiß, Lucas, et al. Diffuse reflectance spectroscopy and raman spectroscopy for label-free molecular characterization and automated detection of human cartilage and subchondral bone. Sensors and Actuators B: Chemical 301 (2019): 127121. https://doi.org/10.1016/j.snb.2019.127121
  • Egawa, Mariko, et al. Extended range near-infrared imaging of water and oil in facial skin. Applied spectroscopy 65.8 (2011): 924-930. https://doi.org/10.1366/11-06251
  • Tromberg, Bruce J., et al. Assessing the future of diffuse optical imaging technologies for breast cancer management. Medical physics 35.6Part1 (2008): 2443-2451 https://doi.org/10.1118/1.2919078
  • Nataliya R. Rovnyagina,Gleb S. Budylin,Pavel V. Dyakonov,Yuri M. Efremov,Marina M. Lipina,Yuliya R. Goncharuk et al. Grading cartilage damage with diffuse reflectance spectroscopy: optical markers and mechanical properties. Journal of BiophotonicsAccepted Articles e202200149 https://doi.org/10.1002/jbio.202200149
Еще
Статья обзорная