Оптические фотолюминесцентные свойства семян растений при заражении микопатогенами
Автор: Беляков М.В., Московский М.Н., Ефременков И.Ю., Новиков В.С., Кузнецов С.М., Бойко А.А., Михайличенко С.М.
Журнал: Инженерные технологии и системы @vestnik-mrsu
Рубрика: Приборы и методы экспериментальной физики
Статья в выпуске: 2, 2024 года.
Бесплатный доступ
Введение. Использование оптического мониторинга качества зерна позволит значительно снизить потери урожая зерновых, вызванные заражением микопатогенами. Цель исследования. Изучение зависимости спектральных характеристик, параметров возбуждения и люминесценции семян зерновых при заражении микопатогенами с целью определения информативных спектральных диапазонов и последующей разработки методики контроля зараженности.
Семена, микопатогены, оптические спектры, фотолюминесценция, альтернариоз, фузариоз, fusarium graminearum, alternaria alternata
Короткий адрес: https://sciup.org/147243819
IDR: 147243819 | DOI: 10.15507/2658-4123.034.202402.281-294
Список литературы Оптические фотолюминесцентные свойства семян растений при заражении микопатогенами
- Lobachevskiy Ya.P., Dorokhov A.S. Digital Technologies and Robotic Devices in the Agriculture. Agricultural Machinery and Technologies. 2021;15(4):6-10. (In Russ., abstract in Eng.) https://doi. org/10.22314/2073-7599-2021-15-4-6-10
- Zudyte B., Luksiene Z. Visible Light-Activated ZnO Nanoparticles for Microbial Control of Wheat Crop. Journal of Photochemistry and Photobiology B: Biology. 2021;219:112206. https://doi. org/10.1016/j .jphotobiol.2021.112206
- Hogg A.C., Johnston R.H., Dyer A.T. Applying Real-Time Quantitative PCR to Fusarium Crown Rot of Wheat. Plant Disease. 2007;91(8): 1021-1028. https://doi.org/10.1094/PDIS-91-8-1021
- Brown N.A., Evans J., Mead A., Hammond-Kosack K.E. A Spatial Temporal Analysis of the Fusarium Graminearum Transcriptome during Symptomless and Symptomatic Wheat Infection. Molecular Plant Pathology. 2017;18(9):1295-1312. https://doi.org/10.1111/mpp.12564
- Bollina V., Kumaraswamy G.K., Kushalappa A.C., Choo T.M., Dion Y., Rioux S., et al. Mass Spectrometry-Based Metabolomics Application to Identify Quantitative Resistance-Related Metabolites in Barley Against Fusarium Head Blight. Molecular Plant Pathology. 2010;11(6):769-782. https://doi. org/10.1111/j.1364-3703.2010.00643.x
- Knight N.L., Sutherland M.W. Histopathological Assessment of Wheat Seedling Tissues Infected by Fusarium Pseudograminearum. Plant Pathology. 2013;62(3):679-687. https://doi.org/10.1111/j.1365-3059.2012.02663.x
- Wójtowicz A., Piekarczyk J., Czernecki B., Ratajkiewicz H. A Random Forest Model for the Classification of Wheat and Rye Leaf Rust Symptoms Based on Pure Spectra at Leaf Scale. Journal of Photochemistry and Photobiology B: Biology. 2021;223:112278. https://doi.org/10.1016/jjphotobi-ol.2021.112278
- Cuba N.I., Torres R., San Román E. Lagorio M.G. Influence of Surface Structure, Pigmentation and Particulate Matter on Plant Reflectance and Fluorescence. Photochemistry and Photobiology. 2021;97(1):110-121. https://doi.org/10.1111/php.13273
- Huang W.J., Lu J.J., Ye H.C., Kong W.P., Mortimer A.H., Shi Y. Quantitative Identification of Crop Disease and Nitrogen-Water Stress in Winter Wheat Using Continuous Wavelet Analysis. International Journal of Agricultural and Biological Engineering. 2018;11(2):145-152. https://doi.org/10.25165/). ijabe.20181102.3467
- Williams P.J., Geladi P., Britz T.J., Manley M. Investigation of Fungal Development in Maize Kernels Using Nir Hyperspectral Imaging and Multivariate Data Analysis. Journal of Cereal Science. 2012;55(3):272-278. https://doi.org/10.1016/jjcs.2011.12.003
- Yao H., Hruska Z., Kincaid R., Brown R.L., Bhatnagar D., Cleveland T.E. Detecting Maize Inoculated With Toxigenic and Atoxigenic Fungal Strains with Fluorescence Hyperspectral Imagery. BiosystemsEngineering. 2013;115(2):125-135. https://doi.org/10.1016/j.biosystemseng.2013.03.006
- Lu Y., Saeys W., Kim M., Peng Y., Lu R. Hyperspectral Imaging Technology for Quality and Safety Evaluation of Horticultural Products: a Review and Celebration of the Past 20-Year Progress. Post-harvest Biology and Technology. 2020;170:111318. https://doi.org/10.1016/j.postharvbio.2020.111318
- Shurygin B., Chivkunova O., Solovchenko O., Solovchenko A., Dorokhov A., Smirnov I., et al. Comparison of the Non-Invasive Monitoring of Fresh-Cut Lettuce Condition with Imaging Reflectance Hyperspectrometer and Imaging PAM-Fluorimeter. Photonics. 2021;8(10):425. https://doi.org/10.3390/ photonics8100425
- Sun Z., Hu D., Wang Z., Xie L., Ying Y. Spatial-Frequency Domain Imaging: An Emerging Depth-Varying and Wide-Field Technique for Optical Property Measurement of Biological Tissues. Photonics. 2021;8(8):162. https://doi.org/10.3390/photonics8050162
- Platonova G., Stys D., Soucek P., Lonhus K., Valenta J., Rychtarikova R. Spectroscopic Approach to Correction and Visualisation of Bright-Field Light Transmission Microscopy Biological Data. Photonics. 2021;8(5):333. https://doi.org/10.3390/photonics8080333
- Toro P.M., Jara D.H., Klahn A.H., Villaman D., Fuentealba M., Vega A., et al. Spectroscopic Study of the E/Z Photoisomerization of a New Cyrhetrenyl Acylhydrazone: A Potential Photoswitch and Photosensitizer. Photochemistry andPhotobiology. 2021;97(1):61-70. https://doi.org/10.1111/php. 13309
- Camuri I.J., da Costa A.B., Ito A.S., Pazin W.M. pH and Charge Effects Behind the Interaction of Artepillin C, the Major Component of Green Propolis, with Amphiphilic Aggregates: Optical Absorption and Fluorescence Spectroscopy Studies. Photochemistry and Photobiology. 2019;95(6):1345-1351. https://doi.org/10.1111/php. 13128
- Rumfeldt J.A., Takala H., Liukkonen A., Ihalainen J.A. UV-Vis Spectroscopy Reveals a Correlation Between Y263 and BV Protonation States in Bacteriophytochromes. Photochemistry and Photobiology. 2019;95:969-979. https://doi.org/10.1111/php.13095
- Gsponer N.S., Rodriguez M.C., Palacios R.E., Chesta C.A. On the Simultaneous Identification and Quantification of Microalgae Populations Based on Fluorometric Techniques. Photochemistry and Photobiology. 2018;94:875-880. https://doi.org/10.1111/php.12936
- Kowalski A., Agati G., Grzegorzewska M., Kosson R., Kusznierewicz B., Chmiel T., et al. Valorization of Waste Cabbage Leaves by Postharvest Photochemical Treatments Monitored with a Non-destructive Fluorescence-based Sensor. Journal of Photochemistry and Photobiology B: Biology. 2021;222:112263. https://doi.org/10.1016/j.jphotobiol.2021.112263
- Cherney J.H., Digman M.F., Cherney D.J. Handheld NIRS for Forage Evaluation. Computers and Electronics in Agriculture. 2021;190:106469. https://doi.org/10.10167j.compag.2021.106469
- Acosta J., Castillo M.S., Hodge G.R. Comparison of Benchtop and Handheld Near-Infrared Spectroscopy Devices to Determine Forage Nutritive Value. Crop Science. 2020;60(6):3410-3422. https://doi. org/10.1002/csc2.20264
- Berzaghi P., Cherney J.H., Casler M.D. Prediction Performance of Portable Near Infrared Reflectance Instruments Using Preprocessed Dried, Ground Forage Samples. Computers and Electronics in Agriculture. 2021;182:106013. https://doi.org/10.1016/jxompag.2021.106013
- Dorokhov A., Moskovskiy M., Belyakov M., Lavrov A., Khamuev V. Detection of Fusari-um Infected Seeds of Cereal Plants by the Fluorescence Method. PLOS ONE. 2022;17(7). https://doi. org/ 10.1371/journal.pone. 0267912
- Belyakov M., Sokolova E., Listratenkova V., Ruzanova N., Kashko L. Photoluminescent Control Ripeness of the Seeds of Plants. E3S Web of Conferences. 2021;273:01003. https://doi.org/10.1051/e3s-conf/202127301003