Оптоволоконные датчики температуры
Автор: Герасимов М.А., Лактюшин Д.Н.
Журнал: Экономика и социум @ekonomika-socium
Рубрика: Основной раздел
Статья в выпуске: 12 (67), 2019 года.
Бесплатный доступ
Статья посвящена оптоволоконным датчикам температуры, а также принципам его работы.
Оптоволоконные датчики температуры, световое рассеяние, рамановские линии, датчики, температура
Короткий адрес: https://sciup.org/140247344
IDR: 140247344 | УДК: 62-791.2
Текст научной статьи Оптоволоконные датчики температуры
5 course, faculty «internal branch» Laktyushin D.N. student
5 course, faculty «internal branch»
Department «systems of ensuring the movement of trains» Krasnoyarsk Institute of railway transport Russia, Krasnoyarsk
FIBER OPTIC TEMPERATURE SENSORS
Annotation: The article is devoted to fiber-optic temperature sensors, as well as the principles of its operation.
Принцип работы оптоволоконного датчика
Физические воздействия на оптоволокно, такие как: температура, давление, сила натяжения - локально изменяют характеристики пропускания света и как следствие, приводят к изменению характеристик сигнала обратного отражения. В основе измерительных систем на основе оптоволоконных датчиков используется сравнение спектров и интенсивностей исходного лазерного излучения и излучения, рассеянного в обратном направлении, после прохождения по оптоволокну.
Обратное световое рассеяние при температурном воздействии
Обратное световое рассеяние состоит из нескольких спектральных составляющих:
-
• Рэлеевское рассеяние, с длиной волны аналогичной, используемой в лазерном источнике;
-
• Стоксовы компоненты Рамановского рассеяния с длиной волны большей, чем у используемого лазерного источника, при которых испускаются фотоны;
-
• Антистоксовы компоненты Рамановского рассеяния с меньшей длиной волны, по сравнению с рэлеевским рассеянием, при которых фотоны поглощаются.
Интенсивность рассеяния так называемого антистоксова диапазона зависит от температуры, в то время как, стоксов диапазон от температуры практически не зависит. Локальная температура оптического волокна выводится из отношения антистоксовой и стоксовой интенсивностей света.
-
• Бриллюэновские линии, которые более интенсивные чем Стоксовы, но имеют меньший спектральный сдвиг Этот спектральный сдвиг вызван акустическими колебаниями кристаллической решетки волокна и несет в себе информацию о механических напряжениях и температурах, воздействующих на волокно. Воздействие механических напряжений и температур приводит к изменению положения Бриллюэновской линии на шкале длин волн.

Частота оптического излучения
Датчики температуры на основе Рамановских линий
Самым современным оборудованием в системе мониторинга распределения температуры, например в трубопроводах, является распределенный оптоволоконный датчик температуры на основе Рамановских линий. Принципом работы датчика является то, что интенсивность Стоксовой Рамановской компоненты рассеянного излучения практически не зависит от температуры, а интенсивность Антистоксовой линии сильно связана с температурой. Это позволяет, определяя отношение интенсивности Антистоксовой линии и Стоксовой линии, определять значение температуры. Данный подход позволяет избавиться от погрешности, связанной с возможными флуктуациями мощности зондирующего лазерного импульса. Системы этого типа могут работать на расстояниях в несколько километров. Пространственное разрешение может достигать 0,5 м.
Метод измерения
Самым известным методом обратного рассеивания является метод OTDR (= Optical Time Domain Reflectometry = оптическая рефлектометрия временной области). В его основе заложен импульсно-акустический метод (импульсы и эхо), в результате разницы времени распространения между временем передачи и обнаружения световых импульсов можно определить уровень и место рассеивания. Соотношение излучаемого рассеивания света с эффектом Рамана, сигнал обратного рассеивания при измерении комбинационного рассеянного света составляет коэффициент 1000. Поэтому локально распределенный датчик температуры Рамана с техникой OTDR может быть реализован только с помощью мощных (дорогих) импульсных лазеров (обычно лазеров с твердым рабочим веществом) и быстрой, также дорогостоящей, техникой передачи сигналов.
Список литературы Оптоволоконные датчики температуры
- Под ред. Э. Удда Волоконно-оптические датчики. Вводный курс для инженеров и научных работников 2008