Опухолевое микроокружение как мишень терапии злокачественных глиом

Автор: Борисов Константин Евгеньевич, Сакаева Дина Дамировна

Журнал: Злокачественные опухоли @malignanttumors

Рубрика: Диагностика и лечение опухолей. Оригинальные статьи

Статья в выпуске: 4 (15), 2015 года.

Бесплатный доступ

Клетки микроглии в злокачественных глиомах тесным образом взаимодействуют с опухолевыми клетками. Микроокружение обеспечивает локальную иммуносупрессию, которая способствует ускользанию опухоли от иммунного контроля со стороны организма. Многочисленные цитокины, секретируемые микроокружением обеспечивают выживание, питание, рост, пролиферацию и инвазию опухолевыхклеток. Лечебное воздействие на микроокружение является не менее значимым, чем традиционная цитостатическая терапия. Перспективными представляются методы терапии, направленные на снижение рекрутинга иммунных клетоки их количества в ткани опухоли, на нейтрализацию иммуносупрессивных свойств микроглии и/или инверсию ее супрессивного фенотипа, а также на растормаживание и стимуляцию тумороцидных функций микроокружения.

Еще

Злокачественные глиомы, микроокружение, противоопухолевое лечение

Короткий адрес: https://sciup.org/140223364

IDR: 140223364   |   DOI: 10.18027/2224-5057-2015-4-14-23

Список литературы Опухолевое микроокружение как мишень терапии злокачественных глиом

  • Kettenmann H., Hanisch U. K., Noda M., Verkhratsky A. Physiology of microglia. Physiological Review. 2011; 91 (2): 461-553.
  • Ginhoux F., Greter M., Leboeuf M., Nandi S., See P., Gokhan S., Mehler M. F., Conway S. J., Ng L. G., Stanley E. R., Samokhvalov I. M., Merad M. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010; 330 (6005): 841-5.
  • Albesiano E., Han J. E., Lim M. Mechanisms of local immunoresistance in glioma. Neurosurgery Clinics of North America. 2010; 21 (1): 17-29.
  • Hussain S. F., Yang D., Suki D., Aldape K., Grimm E., Heimberger A. B. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune response. Neuro-Oncol. 2006; 8 (3): 261-79.
  • Heimberger A. B., Abou-Ghazal M., Reina-Ortiz C., Yang D. S., Sun W., Qiao W., Hiraoka N., Fuller G. N. Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin. Cancer Res. 2008; 14 (16): 5166-72.
  • Najjar Y. G., Finke J. H. Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer. Front. Oncol. 2013; 3: 49.
  • Desbaillets I., Tada M., De Tribolet N., Diserena A. C., Hamou M. F., Van Meir E. G. Human astrocytomas and glioblastomas express monocyte chemoattractant protein-1 (MCP-1) in vivo and in vitro. Int. J. Cancer. 1994; 58 (2): 240-7.
  • Zhu X., Fujita M., Snyder L. A., Okada H. Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy. J. Neuro-Oncol. 2011; 104 (1): 83-92.
  • Remer M., Al-Shamkhani A., Glennie M., Johnson P. Mogamulizumab and the treatment of CCR4-positive T-cell lymphomas. Immunother. 2014; 6 (11): 1187-206.
  • Bayry J., Tartour E., Tough D. F. Targeting CCR4 as an emerging strategy for cancer therapy and vaccines. Trends Pharmacol. Sci. 2014; 35 (4): 163-5.
  • Cahn A., Hodgson S., Wilson R., Robertson J., Watson J., Beerahee M., Hughes S. C., Young G., Graves R., Hall D., van Marle S., Solari R. Safety, tolerability, pharmacokinetics and pharmacodynamics of GSK2239633, a CC-chemokine receptor 4 antagonist, in healthy male subjects: results from an open-label and from a randomised study. BMC Pharmacol. Toxicol. 2013; 14: 14.
  • Fujita M., Kohanbash G., Fellows-Mayle W., Hamilton R. L., Komohara Y., Decker S. A., Ohlfest J. R., Okada H.COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res. 2011; 71 (7): 2664-74.
  • Banissi C., Ghiringhelli F., Chen L., Carpentier A. F. Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol. Immunother. 2009; 58 (10): 1627-34.
  • Ghiringhelli F., Menard C., Puig P. E., Ladoire S., Roux S., Martin F., Solary E., Le Cesne A., Zitvogel L., Chauffert B. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients.Cancer Immunol. Immunother. 2007; 56(5):641-8.
  • Heimberger A. B., Sun W., Hussain S. F., Dey M., Crutcher L., Aldape K., Gilbert M., Hassenbusch S. J., Sawaya R., Schmittling B., Archer G. E., Mitchell D. A., Bigner D. D., Sampson J. H. Immunological responses in a patient with glioblastomamultiforme treated with sequential courses of temozolomide and immunotherapy: case study.NeuroOncol. 2008;10(1):98-103.
  • Jordan J. T., Sun W., Hussain S. F., DeAngulo G., Prabhu S. S., Heimberger A. B. Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol. Immunother. 2008; 57 (1): 123-31.
  • Nakahara T., Uchi H., Lesokhin A. M., Avogadri F., Rizzuto G. A., Hirschhorn-Cymerman D., Panageas K. S., Merghoub T., Wolchok J. D., Houghton A. N. Cyclophosphamide enhances immunity by modulating the balance of dendritic cell subsets in lymphoid organs.Blood. 2010;115(22):4384-92.
  • Holtl L., Ramoner R., Zelle-Rieser C., Gander H., Putz T., Papesh C., Nussbaumer W., Falkensammer C., Bartsch G., Thurnher M. Allogeneic dendritic cell vaccination against metastatic renal cell carcinoma with or without cyclophosphamide. Cancer Immunol. Immunother. 2005;54(7):663-70.
  • Plautz G. E., Miller D. W., Barnett G. H., Stevens G. H., Maffett S., Kim J., Cohen P. A., Shu S.T cell adoptive immunotherapy of newly diagnosed gliomas.Clin. Cancer Res. 2000;6(6):2209-18.
  • Czabanka M., Bruenner J., Parmaksiz G., Broggini T., Topalovic M., Bayerl S. H., Auf G., Kremenetskaia I., Nieminen M., Jabouille A., Mueller S., Harms U., Harms C., Koch A., Heppner F. L., Vajkoczy P. Combined temozolomide and sunitinib treatment leads to better tumour control but increased vascular resistance in O6-methylguanine methyltransferase-methylated gliomas.Eur. J. Cancer. 2013;49(9):2243-52.
  • Ozao-Choy J., Ma G., Kao J., Wang G. X., Meseck M., Sung M., Schwartz M., Divino C. M., Pan P. Y., Chen S. H. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies.Cancer Res. 2009;69(6):2514-22.
  • Niu C. S., Li M. W., Ni Y. F., Chen J. M., Mei J. M., Li J., Fu X. M. Effect of all-trans retinoic acid on the proliferation and differentiation of brain tumor stem cells.J. Exp.Clin. Cancer Res. 2010;29: e113.
  • Nefedova Y., Fishman M., Sherman S., Wang X., Beg A. A., Gabrilovich D. I. Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 2007; 67 (22): 11021-8.
  • Hengesbach L., Hoag K. Physiological concentrations of retinoic acid favor myeloid dendritic cell development over granulocyte development in cultures of bone marrow cells from mice. J. Nutr. 2004; 134 (10): 2653-9.
  • Maes W., Verschuere T., Van Hoylandt A., Boon L., Van Gool S. Depletion of regulatory T cells in a mouse experimental glioma model through anti-CD25 treatment results in the infiltration of non-immunosuppressive myeloid cells in the brain.Clin. Dev. Immunol. 2013;2013: e952469.
  • Fecci P. E., Sweeney A. E., Grossi P. M., Nair S. K., Learn C. A., Mitchell D. A., Cui X., Cummings T. J., Bigner D. D., Gilboa E., Sampson J. H. Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells.Clin. Cancer Res. 2006;12(14 Pt 1):4294-305.
  • Sampson J. H., Schmittling R. J., Archer G. E., Congdon K. L., Nair S. K., Reap E. A., Desjardins A., Friedman A. H., Friedman H. S., Herndon J. E. 2nd, Coan A., McLendon R.E., Reardon D. A., Vredenburgh J. J., Bigner D. D., Mitchell D. A.A pilot study of IL-2R blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma.PLoS One 2012; 7 (2): e31046.
  • Foss F. Clinical Experience WithDenileukinDiftitox (ONTAK). Semin. Oncol. 2006; 33 (1 Suppl. 3): S11-6.
  • Friedline R. H., Brown D. S., Nguyen H., Kornfeld H., Lee J., Zhang Y., Appleby M., Der S. D., Kang J., Chambers C. A. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J. Exp. Med. 2009; 206 (2): 421-34.
  • Rudd C. E. The reverse stop-signal model for CTLA4 function. Nat. Rev. Immunol. 2008; 8 (2): 153-60.
  • Fecci P. E., Ochiai H., Mitchell D. A., Grossi P. M., Sweeney A. E., Archer G. E., Cummings T., Allison J. P., Bigner D. D., Sampson J. H. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function.Clin. Cancer Res. 2007; 13 (7): 2158-67.
  • Kim J. W., Eder J. P. Prospects for Targeting PD-1 and PD-L1 in Various Tumor Types. Oncology (Williston Park) 2014; 28 (11 Suppl. 3): 202332.
  • Zeng J., See A. P., Phallen J., Jackson C. M., Belcaid Z., Ruzevick J., Durham N., Meyer C., Harris T. J., Albesiano E., Pradilla G., Ford E., Wong J., Hammers H. J., Mathios D., Tyler B., Brem H., Tran P. T., Pardoll D., Drake C. G., Lim M. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int. J. Radiat. Oncol. Biol. Phys. 2013; 86 (2): 343-9.
  • Crane C., Panner A., Pieper R. O., Arbiser J., Parsa A. T. Honokiol-mediated inhibition of PI3K/mTOR pathway: a potential strategy to overcome immunoresistance in glioma, breast, and prostate carcinoma without impacting T cell function. J. Immunother. 2009. 32 (6): 585-92.
  • Wainwright D. A., Dey M., Chang A., Lesniak M. S. Targeting Tregs in malignant brain cancer: overcoming IDO. Front. Immunol. 2013; 4: article116.
  • Wainwright D. A., Chang A. L., Dey M., Balyasnikova I. V., Kim C. K., Tobias A., Cheng Y., Kim J. W., Qiao J., Zhang L., Han Y., Lesniak M. S. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors.Clin. Cancer Res. 2014;20(20):5290-301.
  • Wainwright D. A., Lesniak M. S. M nage trois: Sustained therapeutic anti-tumor immunity requires multiple partners in malignant glioma.Oncoimmunol. 2014; 3: e28927.
  • Nagai T., Tanaka M., Tsuneyoshi Y., Xu B., Michie S. A., Hasui K., Hirano H., Arita K., Matsuyama T. Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor beta. Cancer Immunol. Immunother. 2009; 58 (10): 1577-86.
  • Stupp R., Hegi M. E., Gorlia T., Erridge S. C., Perry J., Hong Y. K., et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2014; 15 (10): 1100-8.
  • Chiu T. L., Peng C. W., Wang M. J. Enhanced anti-glioblastoma activity of microglia by AAV2-mediated IL-12 through TRAIL and phagocytosis in vitro.Oncol. Rep. 2011;25(5):1373-80.
  • Kees T., Lohr J., Noack J., Mora R., Gdynia G., Tdt G., Ernst A., Radlwimmer B., Falk C. S., Herold-Mende C., Rgnier-Vigouroux A. Microglia isolated from patients with glioma gain antitumor activities on poly (I: C) stimulation. NeuroOncol. 2012;14(1):64-78.
  • El Andaloussi A., Sonabend A. M., Han Y., Lesniak M. S. Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. GLIA 2006; 54 (6): 526-35.
  • Grauer O. M., Molling J. W., Bennink E., Toonen L. W., Sutmuller R. P., Nierkens S., Adema G. J.TLR ligands in the local treatment of established intracerebral murine gliomas. J. Immunol. 2008; 181 (10): 6720-9.
  • Xiong Z., Ohlfest J. R. Topical imiquimod has therapeutic and immunomodulatory effects against intracranial tumors. 2011; 34 (3): 264-9.
  • Pyonteck S. M., Akkari L., Schuhmacher A. J., Bowman R. L., Sevenich L., Quail D. F., Olson O. C., Quick M. L., Huse J. T., Teijeiro V., Setty M., Leslie C. S., Oei Y., Pedraza A., Zhang J., Brennan C. W., Sutton J. C., Holland E. C., Daniel D., Joyce J. A.CSF-1R inhibition alters macrophage polarization and blocks glioma progression.Nat Med. 2013;19(10):1264-72.
  • Chaudhuri S., Singh M. K., Bhattacharya D., Acharya S., Chatterjee S., Kumar P., Bhattacharjee P., Basu A. K., Sa G., Das T., Ghosh T. K., Chaudhuri S. The novel immunotherapeutic molecule T11TS modulates glioma-induced changes of key components of the immunological synapse in favor of T cell activation and glioma abrogation.J.Neurooncol. 2014; 120 (1): 19-31.
  • Singh M. K., Bhattacharya D., Chaudhuri S., Acharya S., Kumar P., Santra P., Basu A. K., Chaudhuri S.T11TS inhibits glioma angiogenesis by modulation of MMPs, TIMPs, with related integrin αv and TGF-1 expressions.Tumour Biol. 2014; 35 (3): 2231-46.
  • Wei J., Gabrusiewicz K., Heimberger A. The Controversial Role of Microglia in Malignant Gliomas. Clin. Dev.Immunol. 2013;2013: e285246.
  • Markovic D. S., Vinnakota K., van Rooijen N., Kiwit J., Synowitz M., Glass R., Kettenmann H. Minocycline reduces glioma expansion and invasion by attenuating microglial MT1-MMP expression. Brain Behav. Immun. 2011; 25 (4): 624-8.
  • Yeung Y. T., Bryce N. S., Adams S., Braidy N., Konayagi M., McDonald K.L., Teo C., Guillemin G. J., Grewal T., Munoz L. p38 MAPK inhibitors attenuate pro-inflammatory cytokine production and the invasiveness of human U251 glioblastoma cells. J. Neuro-Oncol. 2012; 109 (1): 35-44.
  • Gabrusiewicz K., Ellert-Miklaszewska A., Lipko M., Sielska M., Frankowska M., Kaminska B. Characteristics of the alternative phenotype of microglia/macrophages and itsmodulation in experimental gliomas. PLoS ONE2011; 6 (8): e23902.
  • Jacobs V. L., Landry R. P., Liu Y., Romero-Sandoval E.A., De Leo J. A. Propentofylline decreases tumor growth in a rodent model of glioblastomamultiforme by a direct mechanism on microglia.Neuro-Oncol. 2012; 14 (2): 119-31.
  • Zhang L., Alizadeh D., van Handel M., Kortylewski M., Yu H., Badie B. Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. GLIA 2009; 57 (13): 1458-67.
  • Fujiwara Y., Komohara Y., Kudo R., Tsurushima K., Ohnishi K., Ikeda T., Takeya M. Oleanolic acid inhibits macrophage differentiation into the M2 phenotype and glioblastoma cell proliferation by suppressing the activation of STAT3.Oncol. Rep. 2011;26(6):1533-7.
  • Ashizawa T., Miyata H., Iizuka A., Komiyama M., Oshita C., Kume A., Nogami M., Yagoto M., Ito I., Oishi T., Watanabe R., Mitsuya K., Matsuno K., Furuya T., Okawara T., Otsuka M., Ogo N., Asai A., Nakasu Y., Yamaguchi K., Akiyama Y. Effect of the STAT3 inhibitor STX-0119 on the proliferation of cancer stem-like cells derived from recurrent glioblastoma. Int. J. Oncol. 2013; 43 (1): 219-27.
  • Heimberger A. The therapeutic potential of inhibitors of the signal transducer and activator of transcription 3 for central nervous system malignancies.Surg. Neurol. Int. 2011;2:163.
  • Zheng Q., Han L., Dong Y., Tian J., Huang W., Liu Z., Jia X., Jiang T., Zhang J., Li X., Kang C., Ren H.JAK2/STAT3 targeted therapy suppresses tumor invasion via disruption of the EGFRvIII/JAK2/STAT3 axis and associated focal adhesion in EGFRvIII-expressing glioblastoma.NeuroOncol. 2014;16(9):1229-43.
  • See A. P., Han J. E., Phallen J., Binder Z., Gallia G., Pan F., Jinasena D., Jackson C., Belcaid Z., Jeong S. J., Gottschalk C., Zeng J., Ruzevick J., Nicholas S., Kim Y., Albesiano E., Pardoll D. M., Lim M. The role of STAT3 activation in modulating the immune microenvironment of GBM. J. Neurooncol. 2012; 110 (3): 359-68.
  • Verstovsek S., Mesa R. A., Gotlib J., Levy R. S., Gupta V., DiPersio J.F., Catalano J. V., Deininger M., Miller C., Silver R. T., Talpaz M., Winton E. F., Harvey J. H. Jr., Arcasoy M. O., Hexner E., Lyons R. M., Paquette R., Raza A., Vaddi K., Erickson-Viitanen S., Koumenis I. L., Sun W., Sandor V., Kantarjian H. M.A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis.N. Engl. J. Med. 2012;366(9): 799-807.
  • Kudo M., Jono H., Shinriki S., Yano S., Nakamura H., Makino K., Hide T., Muta D., Ueda M., Ota K., Ando Y., Kuratsu J. Antitumor effect of humanized anti-interleukin-6 receptor antibody (tocilizumab) on glioma cell proliferation. Laboratory investigation.J.Neurosurg. 2009;111(2):219-25.
  • Hardee M. E., Marciscano A. E., Medina-Ramirez C.M., Zagzag D., Narayana A., Lonning S. M., Barcellos-Hoff M. H. Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-. Cancer Res. 2012; 72 (16): 4119-29.
  • Ueda R., Fujita M., Zhu X., Sasaki K., Kastenhuber E. R., Kohanbash G., McDonald H.A., Harper J., Lonning S., Okada H. Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines.Clin. Cancer Res. 2009;15(21):6551-9.
  • Joseph J. V., Balasubramaniyan V., Walenkamp A., Kruyt F. A. TGF-beta as a therapeutic target in high grade gliomas -Promises and challenges. Biochem. Pharmacol. 2013; 85 (4): 478-85.
  • Morris J. С., Tan A. R., Olencki T. E., Shapiro G. I., Dezube B. J., Reiss M., Hsu F. J., Berzofsky J. A., Lawrence D. P. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGF) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One. 2014; 9 (3): e90353.
  • Holper P., Schulz-Schaeffer W., Dullin C., Hoffmann P., Harper J., Kurtzberg L., Lonning S., Kugler W., Lakomek M., Erdlenbruch B. Tumor localization of an anti-TGF-antibody and its effects on gliomas.Int. J. Oncol. 2011;38(1):51-9.
  • Bogdahn U., Hau P., Stockhammer G., Venkataramana N. K., Mahapatra A. K., Suri A., Balasubramaniam A., Nair S., Oliushine V., Parfenov V., Poverennova I., Zaaroor M., Jachimczak P., Ludwig S., Schmaus S., Heinrichs H., Schlingensiepen K. H.; TrabedersenGlioma Study Group. Targeted therapy for high-grade glioma with the TGF-2 inhibitor trabedersen: results of a randomized and controlled phase IIb study.NeuroOncol. 2011;13(1):132-42.
  • Zhang M., Herion T. W., Timke C., Han N., Hauser K., Weber K. J., Peschke P., Wirkner U., Lahn M., Huber P. E. Trimodalglioblastoma treatment consisting of concurrent radiotherapy, temozolomide, and the novel TGF-receptor I kinase inhibitor LY2109761.Neoplasia 2011; 13 (6): 537-49.
  • Zhang M., Kleber S., Rhrich M., Timke C., Han N., Tuettenberg J., Martin-Villalba A., Debus J., Peschke P., Wirkner U., Lahn M., Huber P. E. Blockade of TGF-signaling by the TGFR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res. 2011; 71 (23): 7155-67.
  • Humphries W., Wei J., Sampson J. H., Heimberger A. B. The role of tregs in glioma-mediated immunosuppression: potential target for intervention.Neurosurg. Clin. N. Am. 2010;21 (1): 125-37.
Еще
Статья научная