Основные особенности фрактальной компьютерной графики

Автор: Кодиров Р.Р.

Журнал: Мировая наука @science-j

Рубрика: Основной раздел

Статья в выпуске: 1 (22), 2019 года.

Бесплатный доступ

В данной стране рассматриваются основные особенности Фрактальной компьютерной графики. Фрактальная классификация была проанализирована

Графика, компьютер, фрактальная графика, геометрия

Короткий адрес: https://sciup.org/140263833

IDR: 140263833

Текст научной статьи Основные особенности фрактальной компьютерной графики

Слово фрактал образовано от латинского "fractus" и в переводе означает состоящий из фрагментов. Оно было предложено Бенуа Мандельбротом в 1975 году. Определение фрактала, данное Мандельбротом, звучит так: "Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому". Одним из основных свойств фракталов является самоподобие. В самом простом случае небольшая часть фрактала содержит информацию о всем фрактале. Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов.

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких, как деревья, кусты, горные ландшафты, поверхности морей и т. д. Роль фракталов в машинной графике сегодня достаточно велика. Они приходят на помощь, например, когда требуется, получить линии и поверхности очень сложной формы. Фракталы используются для описания кривизны поверхностей. С точки зрения машинной графики, фрактальная геометрия незаменима при генерации искусственных облаков, объемных рельефных гор, поверхности моря. Фактически найден способ легкого представления сложных неевклидовых объектов, образы которых весьма похожи на природные. Фрактальная компьютерная графика широко используется при создании мультфильмов и фантастических художественных фильмов. Используются антенны, имеющие фрактальные формы, что сильно уменьшает их размеры и вес.

Наиболее полезным использованием фракталов в компьютерной науке является фрактальное сжатие данных. Достоинство фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Фрактально упакованные картинки можно масштабировать без появления пикселизации. Но процесс сжатия занимает продолжительное время и иногда длится часами. Алгоритм фрактальной упаковки с потерей качества позволяет задать степень сжатия, аналогично формату jpeg.

В основе алгоритма лежит поиск больших кусков изображения подобных некоторым маленьким кусочкам. И в выходной файл записывается только какой кусочек какому подобен. При сжатии обычно используют квадратную сетку (кусочки - квадраты), что приводит к небольшой угловатости при восстановлении картинки, шестиугольная сетка лишена такого недостатка.

  •    Механика жидкостей.

Изучение турбулентности в потоках очень хорошо подстраивается под фракталы. Турбулентные потоки хаотичны и поэтому их сложно точно смоделировать.

При помощи фракталов также можно смоделировать языки пламени.

Пористые материалы хорошо представляются в фрактальной форме в связи с тем, что они имеют очень сложную геометрию. Это используется в нефтяной науке.

  •    Телекоммуникации.

В телекоммуникациях фракталы используются для создания фрактальных антенн. Фрактальные антенны - относительно новый класс электрически малых антенн (ЭМА), принципиально отличающийся своей геометрией от известных решений. По сути, традиционная эволюция антенн базировалась на евклидовой геометрии, оперирующей объектами целочисленной размерности (линия, круг, эллипс, параболоид и т. п.). Фрактальная антенны с удивительно компактным дизайном обеспечивает превосходную широкополосную производительность в маленьком формфакторе. Достаточно компактны для установки или встраивания в различных местах, фрактальные антенны используются для морских, воздушных транспортных средств, или персональных устройств. На изображении выше пример фрактальной антенны.

Также в сфере сетевых технологий было проведено множество исследований показывающих самоподобие траффика передаваемого по разного рода сетям. Особенно это касается речевых, аудио и видео сервисов. Поэтому сейчас ведутся разработки и исследования возможности фрактального сжатия траффика передаваемого по сетям, с целью более эффективной передачи информации.

Вообще фракталом называется предмет который обладает одним из указанных свойств:

  •    Обладает нетривиальной структурой на всех масштабах. В этом и есть отличие от регулярных фигур, таких как окружность или эллипс. Если мы рассмотрим небольшой фрагмент регулярной фигуры в

крупном масштабе, то он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведет к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.

  • ❖    Является самоподобным или приближенно самоподобным.

  • ❖    Обладает дробной метрической размерностью.

В основном фракталы классифицируют по трём видам:

.    Алгебраические фракталы

.    Геометрические фракталы

.    Стохастические фракталы

Алгебраические фракталы

Алгебраические фракталы - это самая крупная группа фракталов, получившая название за использование алгебраических формул. Методов получения алгебраических фракталов несколько. Один из методов представляет собой многократный (итерационный) расчет функции Zn+1=f(Zn), где Z - комплексное число, а f некая функция. Расчет данной функции продолжается до выполнения определенного условия. И когда это условие выполнится - на экран выводится точка. При этом функция для разных точек комплексной плоскости может иметь разное поведение: с течением времени она может стремиться к бесконечности; стремиться к 0; принимать несколько фиксированных значений и не выходить за их пределы. Поведение хаотично, без каких-либо тенденций. Таким образом было получено множество Мандельброта - фрактал, определённый, как множество точек С на комплексной плоскости. Бенуа Мандельброт предложил модель фрактала, которая стала классической и часто используется для демонстрации, как типичного примера самого фрактала, так и для демонстрации красоты фракталов, которая также привлекает исследователей, художников, просто интересующихся людей.

Список литературы Основные особенности фрактальной компьютерной графики

  • Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. РХД 2008 г. Дж.Милнор Голоморфная динамика. РХД 2010 г.
  • Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 2009.
Статья научная