Особенности экспрессии PD-l1 в клетках стромы опухоли, перитуморальных микрососудах и изолированных кластерах опухолевых клеток в ткани рака молочной железы и их корреляции с клинико-морфологическими характеристиками рака молочной железы
Автор: Зубарева Е.Ю., Сеньчукова М.А., Кармакова Т.А., Зайцев Н.В.
Журнал: Сибирский онкологический журнал @siboncoj
Рубрика: Лабораторные и экспериментальные исследования
Статья в выпуске: 5 т.22, 2023 года.
Бесплатный доступ
Цель исследования - изучить особенности экспрессии PD-L1 в клетках стромы опухоли, перитуморальных микрососудах и изолированных кластерах опухолевых клеток в ткани рака молочной железы (РМЖ) и их корреляции с клинико-морфологическими характеристиками РМЖ. материал и методы. В исследование включено 158 пациенток с впервые выявленным инвазивным РМЖ. Экспрессию PD-L1 изучали методом иммуногистохимии. Статистическую обработку результатов выполняли с использованием программы Statistica 12.0.
Рак молочной железы, опухолевая прогрессия, лиганд рецептора программируемой клеточный гибели 1 (pd-l1), ядерная экспрессия pd-l1, изолированные кластеры опухолевых клеток, перитуморальные микрососуды
Короткий адрес: https://sciup.org/140303544
IDR: 140303544 | DOI: 10.21294/1814-4861-2023-22-5-71-83
Список литературы Особенности экспрессии PD-l1 в клетках стромы опухоли, перитуморальных микрососудах и изолированных кластерах опухолевых клеток в ткани рака молочной железы и их корреляции с клинико-морфологическими характеристиками рака молочной железы
- WHO [Internet]. Breast cancer [cited 2023 Apr 20]. URL: https://www.who.int/news-room/fact-sheets/detail/breast-cancer.
- Zhang J., Zhang S., Gao S., Ma Y., Tan X., Kang Y., Ren W. HIF-1α, TWIST-1 and ITGB-1, associated with Tumor Stiffness, as Novel Predictive Markers for the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancer Manag Res. 2020; 12: 2209-22. https://doi.org/10.2147/CMAR.S246349.
- Messeha S.S., Zarmouh N.O., Soliman K.F.A. Polyphenols Modulating Effects of PD-L1/PD-1 Checkpoint and EMT-Mediated PD-L1 Overexpression in Breast Cancer. Nutrients. 2021; 13(5): 1718. https://doi.org/10.3390/nu13051718.
- Nathanson S.D., Detmar M., Padera T.P., Yates L.R., Welch D.R., Beadnell T.C., Scheid A.D., Wrenn E.D., Cheung K. Mechanisms of breast cancer metastasis. Clin Exp Metastasis. 2022; 39(1): 117-37. https://doi.org/10.1007/s10585-021-10090-2.
- Almozyan S., Colak D., Mansour F., Alaiya A., Al-Harazi O., Qattan A., Al-Mohanna F., Al-Alwan M., Ghebeh H. PD-L1 promotes OCT4 and Nanog expression in breast cancer stem cells by sustaining PI3K/AKT pathway activation. Int J Cancer. 2017; 141(7): 1402-12. https://doi.org/10.1002/ijc.30834.
- Mansour F.A., Al-Mazrou A., Al-Mohanna F., Al-Alwan M., Ghebeh H. PD-L1 is overexpressed on breast cancer stem cells through notch3/mTOR axis. Oncoimmunology. 2020; 9(1). https://doi.org/10.1080/2162402X.2020.1729299.
- Wang C., Zhu H., Zhou Y., Mao F., Lin Y., Pan B., Zhang X., Xu Q., Huang X., Sun Q. Prognostic Value of PD-L1 in Breast Cancer: A MetaAnalysis. Breast J. 2017; 23(4): 436-43. https://doi.org/10.1111/tbj.12753.
- Karnik T., Kimler B.F., Fan F., Tawfik O. PD-L1 in breast cancer: comparative analysis of 3 different antibodies. Hum Pathol. 2018; 72: 28-34. https://doi.org/10.1016/j.humpath.2017.08.010.
- Zhou T., Xu D., Tang B., Ren Y., Han Y., Liang G., Wang J., Wang L. Expression of programmed death ligand-1 and programmed death-1 in samples of invasive ductal carcinoma of the breast and its correlation with prognosis. Anticancer Drugs. 2018; 29(9): 904-10. https://doi.org/10.1097/CAD.0000000000000683.
- Catacchio I., Silvestris N., Scarpi E., Schirosi L., Scattone A., Mangia A. Intratumoral, rather than stromal, CD8+ T cells could be a potential negative prognostic marker in invasive breast cancer patients. Transl Oncol. 2019; 12(3): 585-95. https://doi.org/10.1016/j.tranon.2018.12.005.
- Evangelou Z., Papoudou-Bai A., Karpathiou G., Kourea H., Kamina S., Goussia A., Harissis H., Peschos D., Batistatou A. PD-L1 Expression and Tumor-infiltrating Lymphocytes in Breast Cancer: Clinicopathological Analysis in Women Younger than 40 Years Old. In Vivo. 2020; 34(2): 639-47. https://doi.org/10.21873/invivo.11818.
- Huang W., Ran R., Shao B., Li H. Prognostic and clinicopathological value of PD-L1 expression in primary breast cancer: a meta-analysis. Breast Cancer Res Treat. 2019; 178(1): 17-33. https://doi.org/10.1007/s10549-019-05371-0.
- Hoffmann L.G., Sarian L.O., Vassallo J., de Paiva Silva G.R., Ramalho S.O.B., Ferracini A.C., da Silva Araujo K., Jales R.M., Figueira D.E., Derchain S. Evaluation of PD-L1 and tumor infiltrating lymphocytes in paired pretreatment biopsies and post neoadjuvant chemotherapy surgical specimens of breast carcinoma. Sci Rep. 2021; 11(1): 22478. https://doi.org/10.1038/s41598-021-00944-w.
- Du Q., Che J., Jiang X., Li L., Luo X., Li Q. PD-L1 Acts as a Promising Immune Marker to Predict the Response to Neoadjuvant Chemotherapy in Breast Cancer Patients. Clin Breast Cancer. 2020; 20(1): 99-111. https://doi.org/10.1016/j.clbc.2019.06.014.
- Cirqueira M.B., Mendonça C.R., Noll M., Soares L.R., de Paula Carneiro Cysneiros M.A., Paulinelli R.R., Moreira M.A.R., Freitas-Junior R. Prognostic Role of PD-L1 Expression in Invasive Breast Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel). 2021; 13(23): 6090. https://doi.org/10.3390/cancers13236090.
- Zubareva E., Senchukova M., Karmakova T. Predictive significance of HIF-1α, Snail, and PD-L1 expression in breast cancer. Clin Exp Med. 2023. https://doi.org/10.1007/s10238-023-01026-z.
- Chowdhury S., Veyhl J., Jessa F., Polyakova O., Alenzi A., MacMillan C., Ralhan R., Walfish P.G. Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget. 2016; 7(22): 32318-28. https://doi.org/10.18632/oncotarget.8698.
- Satelli A., Batth I.S., Brownlee Z., Rojas C., Meng Q.H., Kopetz S., Li S. Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients. Sci Rep. 2016; 6. https://doi.org/10.1038/srep28910.
- Wu Y., Chen W., Xu Z.P., Gu W. PD-L1 Distribution and Perspective for Cancer Immunotherapy-Blockade, Knockdown, or Inhibition. Front Immunol. 2019; 10. https://doi.org/10.3389/fimmu.2019.02022.
- Brierley J., Gospodarowicz M.K., Wittekind Ch. (2017). TNM Classification of Malignant Tumors (8th edition). Oxford, UK; Hoboken, NJ: John Wiley & Sons, Inc., 2017.
- Kanugula A.K., Adapala R.K., Jamaiyar A., Lenkey N., Guarino B.D., Liedtke W., Yin L., Paruchuri S., Thodeti C.K. Endothelial TRPV4 channels prevent tumor growth and metastasis via modulation of tumor angiogenesis and vascular integrity. Angiogenesis. 2021; 24(3): 647-56. https://doi.org/10.1007/s10456-021-09775-9.
- Rodig N., Ryan T., Allen J.A., Pang H., Grabie N., Chernova T., Greenfield E.A., Liang S.C., Sharpe A.H., Lichtman A.H., Freeman G.J. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur J Immunol. 2003; 33(11): 3117-26. https://doi.org/10.1002/eji.200324270.
- Gibbons Johnson R.M., Dong H. Functional Expression of Programmed Death-Ligand 1 (B7-H1) by Immune Cells and Tumor Cells. Front Immunol. 2017; 8: 961. https://doi.org/10.3389/fimmu.2017.00961.
- Bracamonte-Baran W., Gilotra N.A., Won T., Rodriguez K.M., Talor M.V., Oh B.C., Griffin J., Wittstein I., Sharma K., Skinner J., Johns R.A., Russell S.D., Anders R.A., Zhu Q., Halushka M.K., Brandacher G., Čiháková D. Endothelial Stromal PD-L1 (Programmed Death Ligand 1) Modulates CD8+ T-Cell Infiltration After Heart Transplantation. Circ Heart Fail. 2021; 14(10). https://doi.org/10.1161/CIRCHEARTFAILURE.120.007982.
- Liu S., Qin T., Liu Z., Wang J., Jia Y., Feng Y., Gao Y., Li K. Anlotinib alters tumor immune microenvironment by downregulating PD-L1 expression on vascular endothelial cells. Cell Death Dis. 2020; 11(5): 309. https://doi.org/10.1038/s41419-020-2511-3.
- Vanharanta S., Massagué J. Origins of metastatic traits. Cancer Cell. 2013; 24(4): 410-21. https://doi.org/10.1016/j.ccr.2013.09.007.
- Celià-Terrassa T., Kang Y. Distinctive properties of metastasisinitiating cells. Genes Dev. 2016; 30(8): 892-908. https://doi.org/10.1101/gad.277681.116.
- Lambert A.W., Pattabiraman D.R., Weinberg R.A. Emerging Biological Principles of Metastasis. Cell. 2017; 168(4): 670-91. https://doi.org/10.1016/j.cell.2016.11.037.
- Brown C.W., Amante J.J., Mercurio A.M. Cell clustering mediated by the adhesion protein PVRL4 is necessary for α6β4 integrin-promoted ferroptosis resistance in matrix-detached cells. J Biol Chem. 2018; 293(33): 12741-8. https://doi.org/10.1074/jbc.RA118.003017.
- Lo H.C., Xu Z., Kim I.S., Pingel B., Aguirre S., Kodali S., Liu J., Zhang W., Muscarella A.M., Hein S.M., Krupnick A.S., Neilson J.R., Paust S., Rosen J.M., Wang H., Zhang X.H. Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nat Cancer. 2020; 1(7): 709-22. https://doi.org/10.1038/s43018-020-0068-9.
- Cheung K.J., Padmanaban V., Silvestri V., Schipper K., Cohen J.D., Fairchild A.N., Gorin M.A., Verdone J.E., Pienta K.J., Bader J.S., Ewald A.J. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci USA. 2016; 113(7): 854-63. https://doi.org/10.1073/pnas.1508541113.
- Wrenn E., Huang Y., Cheung K. Collective metastasis: coordinating the multicellular voyage. Clin Exp Metastasis. 2021; 38(4): 373-99. https://doi.org/10.1007/s10585-021-10111-0.
- Pastushenko I., Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol. 2019; 29(3): 212-26. https://doi.org/10.1016/j.tcb.2018.12.001.
- Jiang Y., Zhan H. Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Cancer Lett. 2020; 468: 72-81. https://doi.org/10.1016/j.canlet.2019.10.013.
- Sahoo S., Nayak S.P., Hari K., Purkait P., Mandal S., Kishore A., Levine H., Jolly M.K. Immunosuppressive Traits of the Hybrid Epithelial/Mesenchymal Phenotype. Front Immunol. 2021; 12. https://doi.org/10.3389/fimmu.2021.797261.
- Rom-Jurek E.M., Kirchhammer N., Ugocsai P., Ortmann O., Wege A.K., Brockhoff G. Regulation of Programmed Death Ligand 1 (PD-L1) Expression in Breast Cancer Cell Lines In Vitro and in Immunodeficient and Humanized Tumor Mice. Int J Mol Sci. 2018; 19(2): 563. https://doi.org/10.3390/ijms19020563.
- Yu J., Qin B., Moyer A.M., Nowsheen S., Tu X., Dong H., Boughey J.C., Goetz M.P., Weinshilboum R., Lou Z., Wang L. Regulation of sister chromatid cohesion by nuclear PD-L1. Cell Res. 2020; 30(7): 590-601. https://doi.org/10.1038/s41422-020-0315-8.
- Gao Y., Nihira N.T., Bu X., Chu C., Zhang J., Kolodziejczyk A., Fan Y., Chan N.T., Ma L., Liu J., Wang D., Dai X., Liu H., Ono M., Nakanishi A., Inuzuka H., North B.J., Huang Y.H., Sharma S., Geng Y., Xu W., Liu X.S., Li L., Miki Y., Sicinski P., Freeman G.J., Wei W. Acetylationdependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat Cell Biol. 2020; 22(9): 1064-75. https://doi.org/10.1038/s41556-020-0562-4.
- Ma R., Liu Y., Che X., Li C., Wen T., Hou K., Qu X. Nuclear PDL1 promotes cell cycle progression of BRAF-mutated colorectal cancer by inhibiting THRAP3. Cancer Lett. 2022; 527: 127-39. https://doi.org/10.1016/j.canlet.2021.12.017.
- Xiong W., Gao Y., Wei W., Zhang J. Extracellular and nuclear PD-L1 in modulating cancer immunotherapy. Trends Cancer. 2021; 7(9): 837-46. https://doi.org/10.1016/j.trecan.2021.03.003.