Особенности трехмерная графики
Автор: Бердиев Р.К.
Журнал: Мировая наука @science-j
Рубрика: Основной раздел
Статья в выпуске: 1 (22), 2019 года.
Бесплатный доступ
В этой статье обсуждаются основные особенности трехмерной графики.
Компьютер, графика, модель, изображения
Короткий адрес: https://sciup.org/140263909
IDR: 140263909
Текст научной статьи Особенности трехмерная графики
Трехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов. В качестве примера рассмотрим наиболее сложный вариант трехмерного моделирования - создание подвижного изображения реального физического тела.
Трехмерная графика
В упрощенном виде для пространственного моделирования объекта требуется:
-
• спроектировать и создать виртуальный каркас (“скелет”) объекта, наиболее полно соответствующий его реальной форме;
-
• спроектировать и создать виртуальные материалы, по
физическим свойствам визуализации похожие на реальные;
-
• присвоить материалы различным частям поверхности объекта
(на профессиональном жаргоне - “спроектировать текстуры на объект”);
-
• настроить физические параметры пространства, в котором
будет действовать объект, - задать освещение, гравитацию, свойства атмосферы, свойства взаимодействующих объектов и поверхностей;
-
• задать траектории движения объектов;
-
• рассчитать результирующую последовательность кадров;
-
• наложить поверхностные эффекты на итоговый анимационный
ролик.
Для создания реалистичной модели объекта используют геометрические примитивы (прямоугольник, куб, шар, конус и прочие) и гладкие, так называемые сплайновые поверхности. В последнем случае применяют чаще всего метод бикубических рациональных В-сплайнов на неравномерной сетке (NURBS). Вид поверхности при этом определяется расположенной в пространстве сеткой опорных точек. Каждой точке присваивается коэффициент, величина которого определяет степень ее влияния на часть поверхности, проходящей вблизи поверхностной рефракции точки. От взаимного расположения точек и величины коэффициентов зависит форма и “гладкость” поверхности в целом.
После формирования “скелета” объекта необходимо покрыть его поверхность материалами. Все многообразие свойств в компьютерном моделировании сводится к визуализации поверхности, то есть к расчету коэффициента прозрачности поверхности и угла преломления лучей света на границе материала и окружающего пространства.
Закраска поверхностей осуществляется методами Гуро (Gouraud) или
Фонга (Phong). В первом случае цвет примитива рассчитывается лишь в его вершинах, а затем линейно интерполируется по поверхности. Во втором случае строится нормаль к объекту в целом, ее вектор интерполируется по поверхности составляющих примитивов и освещение рассчитывается для каждой точки.
Свет, уходящий с поверхности в конкретной точке в сторону наблюдателя, представляет собой сумму компонентов, умноженных на коэффициент, связанный с материалом и цветом поверхности в данной точке.
Следующим этапом является наложение (“проектирование”) текстур на определенные участки каркаса объекта. При этом необходимо учитывать их взаимное влияние на границах примитивов. Проектирование материалов на объект - задача трудно формализуемая, она сродни художественному процессу и требует от исполнителя хотя бы минимальных творческих способностей.
После завершения конструирования и визуализации объекта приступают к его “оживлению”, то есть заданию параметров движения.
Эти условия определяются иерархией объектов (то есть законами их взаимодействия между собой), разрешенными плоскостями движения, предельными углами поворотов, величинами ускорений и скоростей. Такой подход называют методом инверсной кинематики движения. Он хорошо работает при моделировании движения механических устройств. В случае с имитацией живых объектов используют так называемые скелетные модели. То есть, создается некий каркас, подвижный в точках, характерных для моделируемого объекта. Движения точек просчитываются предыдущим методом. Затем на каркас накладывается оболочка, состоящая из смоделированных поверхностей, для которых каркас является набором контрольных точек, то есть создается каркасная модель. Каркасная модель визуализуется наложением поверхностных текстур с учетом условий освещения. В ходе перемещения объекта получается весьма правдоподобная имитация движений живых существ.
Самые совершенные на сегодняшний день устройства созданы для обучения пилотированию космических кораблей и военных летательных аппаратов. Моделированием и визуализацией объектов в таких тренажерах заняты несколько специализированных графических станций, построенных на мощных RISC-процессорах и скоростных видеоадаптерах с аппаратными ускорителями трехмерной графики. Общее управление системой и просчет сценариев взаимодействия возложены на суперкомпьютер, состоящий из десятков и сотен процессоров. Стоимость таких комплексов выражается девятизначными цифрами, но их применение окупается достаточно быстро, так как обучение на реальных аппаратах в десятки раз дороже.
Список литературы Особенности трехмерная графики
- Курушин В.Д. Графический дизайн и реклама. - М.: ДМК - Пресс, 2001. 272с.
- Месхешвили Н.Экспрессивные средства письменной коммуникации Ин-т языкознания АН СССР. - М.:2006