Остеопонтин как предиктфактор неблагоприятных случаев у больных с коморбидной патологией

Автор: Чынгышпаев Даниял Шамильевич, Узаков Орозали Жаанбаевич

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Медицинские науки

Статья в выпуске: 11 т.8, 2022 года.

Бесплатный доступ

Даны сведения о результатах обследования 78 женщин в возрасте от 50 до 65 лет. Исследовалась природа коморбидной патологии: хроническую сердечную недостаточность, сахарный диабет 2 типа и остеопороз. Установлено, что остеопонтин является независимым фактором риска развития неблагоприятных сердечно-сосудистых событий и переломов костей у женщин с коморбидной патологией. В течение 36 месяцев проспективного наблюдения у пациенток с коморбидной патологией и уровнем ОПН >21,4 нг/мл значимо чаще регистрировались неблагоприятные сердечно-сосудистые события и остеопоретические переломы. У пациенток 2-й группы с уровнем ОПН >21,4 нг/мл по сравнению с группой с концентрацией ОПН ≤21,4 нг/мл, риск кумулятивной (объединенной частоты комбинированной конечной точки кардиоваскулярных событий) был повышен (ОШ=6,200 [95% ДИ 2,258-17,024; р=0,001]). Раздельный анализ показал существенное повышение риска неблагоприятных событий в течение 36 месяцев при концентрации ОПН >21,4 нг/мл: прогрессирование ХСН (ОШ=4,073 [95% ДИ 1,575-10,531; р=0,023]) и остеопоретических переломов костей (ОШ=0,81 [95% ДИ 0,72-0,90; р=0,01]); риски ИМ (ОШ=4,343 [95% ДИ 0,463-40,751; р=0,162]), мозгового инсульта (ОШ=1,178 [95% ДИ 0,315-31,860; р=0,498]) и декомпенсации ХСН (ОШ=1,938 [95% ДИ 0,696-5,391; р=0,083]) повышались несущественно. Уровень ОПН >21,4 нг/мл (чувствительность-83%, специфичность-62%) позволяет с высокой вероятностью прогнозировать наступление неблагоприятных сердечно-сосудистых событий у больных ИБС с СД 2 типа и остеопорозом.

Еще

Патология, сердечно-сосудистые заболевания, коморбидная патология, остеопонтин, остеопороз

Короткий адрес: https://sciup.org/14126137

IDR: 14126137   |   DOI: 10.33619/2414-2948/84/39

Список литературы Остеопонтин как предиктфактор неблагоприятных случаев у больных с коморбидной патологией

  • Dhindsa D. S., Sandesara P. B., Shapiro M. D., Wong N. D. The evolving understanding and approach to residual cardiovascular risk management // Frontiers in Cardiovascular Medicine. 2020. V. 7. P. 88. https://doi.org/10.3389/fcvm.2020.00088
  • Arnett D. K., Blumenthal R. S., Albert M. A., Buroker A. B., Goldberger Z. D., Hahn E. J., Ziaeian B. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines // Journal of the American College of Cardiology. 2019. V. 74. №10. P. 1376-1414.
  • Libby P. The changing landscape of atherosclerosis // Nature. 2021. V. 592. №7855. P. 524-533. https://doi.org/10.1038/s41586-021-03392-8
  • Martínez-Hervás S., González-Navarro H. Anti-inflammatory therapies for cardiovascular disease: signaling pathways and mechanisms // Revista Española de Cardiología (English Edition). 2019. V. 72. №9. P. 767-773. https://doi.org/10.1016/j.rec.2019.03.007
  • Lutgens E., Atzler D., Döring Y., Duchene J., Steffens S., Weber C. Immunotherapy for cardiovascular disease // European heart journal. 2019. V. 40. №48. P. 3937-3946. https://doi.org/10.1093/eurheartj/ehz283
  • Nidorf S. M., Fiolet A. T., Mosterd A., Eikelboom J. W., Schut A., Opstal T. S., Thompson P. L. Colchicine in patients with chronic coronary disease // New England journal of medicine. 2020. V. 383. №19. P. 1838-1847. https://doi.org/10.1056/NEJMoa2021372
  • Ridker P. M., Everett B. M., Thuren T., MacFadyen J. G., Chang W. H., Ballantyne C., Glynn R. J. Antiinflammatory therapy with canakinumab for atherosclerotic disease // New England journal of medicine. 2017. V. 377. №12. P. 1119-1131. https://doi.org/10.1056/NEJMoa1707914
  • Yousuf O., Mohanty B. D., Martin S. S., Joshi P. H., Blaha M. J., Nasir K., Budoff M. J. High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link? // Journal of the American College of Cardiology. 2013. V. 62. №5. P. 397-408. https://doi.org/10.1016/j.jacc.2013.05.016
  • Ridker P. M., Danielson E., Fonseca F. A., Genest J., Gotto Jr A. M., Kastelein J. J., Glynn R. J. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein // New England journal of medicine. 2008. V. 359. №21. P. 2195-2207. https://doi.org/10.1056/NEJMoa0807646
  • Yee Lok Z. S., Lyle A. N. Osteopontin in vascular disease: Friend or foe // Arterioscler. Thromb. Vasc. Biol. 2019. V. 39. №4. P. 613-622.
  • Abdelaziz Mohamed I., Gadeau A. P., Hasan A., Abdulrahman N., Mraiche F. Osteopontin: a promising therapeutic target in cardiac fibrosis // Cells. 2019. V. 8. №12. P. 1558. https://doi.org/10.3390/cells8121558
  • Icer M. A., Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin // Clinical biochemistry. 2018. V. 59. P. 17-24. https://doi.org/10.1016/j.clinbiochem.2018.07.003
  • Cho H. J., Cho H. J., Kim H. S. Osteopontin: a multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification // Current atherosclerosis reports. 2009. V. 11. №3. P. 206-213. https://doi.org/10.1007/s11883-009-0032-8
  • Si J., Wang C., Zhang D., Wang B., Hou W., Zhou Y. Osteopontin in bone metabolism and bone diseases // Medical science monitor: international medical journal of experimental and clinical research. 2020. V. 26. P. e919159-1. https://doi.org/10.12659%2FMSM.919159
  • Singh M., Foster C. R., Dalal S., Singh K.Osteopontin: role in extracellular matrix deposition and myocardial remodeling post-MI // Journal of molecular and cellular cardiology. 2010. V. 48. №3. P. 538-543. https://doi.org/10.1016/j.yjmcc.2009.06.015
  • Shirakawa K., Sano M. Sodium-glucose Co-transporter 2 inhibitors correct metabolic maladaptation of proximal tubular epithelial cells in high-glucose conditions // International journal of molecular sciences. 2020. V. 21. №20. P. 7676. https://doi.org/10.3390/ijms21207676
  • Abdalrhim A. D., Marroush T. S., Austin E. E., Gersh B. J., Solak N., Rizvi S. A., Kullo I. J. Plasma osteopontin levels and adverse cardiovascular outcomes in the PEACE trial // PloS one. 2016. V. 11. №6. P. e0156965. https://doi.org/10.1371/journal.pone.0156965
  • Klingel K., Kandolf R. Osteopontin: a biomarker to predict the outcome of inflammatory heart disease // Seminars in thrombosis and hemostasis. 2010. V 36. №02. P. 195-202. https://doi.org/10.1055/s-0030-1251504
  • Yousefi K., Irion C. I., Takeuchi L. M., Ding W., Lambert G., Eisenberg T., Shehadeh L. A. Osteopontin promotes left ventricular diastolic dysfunction through a mitochondrial pathway // Journal of the American College of Cardiology. 2019. V. 73. №21. P. 2705-2718.
  • Szalay G., Sauter M., Haberland M., Zuegel U., Steinmeyer A., Kandolf R., Klingel K. Osteopontin: a fibrosis-related marker molecule in cardiac remodeling of enterovirus myocarditis in the susceptible host // Circulation research. 2009. V. 104. №7. P. 851-859. https://doi.org/10.1161/CIRCRESAHA.109.193805
  • Carbone F., Rigamonti F., Burger F., Roth A., Bertolotto M., Spinella G., Montecucco F. Serum levels of osteopontin predict major adverse cardiovascular events in patients with severe carotid artery stenosis // International Journal of Cardiology. 2018. V. 255. P. 195-199. https://doi.org/10.1016/j.ijcard.2018.01.008
  • Bjerre M., Pedersen S. H., Møgelvang R., Lindberg S., Jensen J. S., Galatius S., Flyvbjerg A. High osteopontin levels predict long-term outcome after STEMI and primary percutaneous coronary intervention // European journal of preventive cardiology. 2013. V. 20. №6. P. 922-929. https://doi.org/10.1177/2047487313487083
  • Shirakawa K., Endo J., Kataoka M., Katsumata Y., Yoshida N., Yamamoto T., Sano M. IL (interleukin)-10–STAT3–galectin-3 axis is essential for osteopontin-producing reparative macrophage polarization after myocardial infarction // Circulation. 2018. V. 138. №18. P. 2021- 2035. https://doi.org/10.1161/CIRCULATIONAHA.118.035047
  • Rittling S. R. Osteopontin in macrophage function // Expert reviews in molecular medicine. 2011. V. 13. https://doi.org/10.1017/S1462399411001839
  • Schack L., Stapulionis R., Christensen B., Kofod-Olsen E., Sørensen U. B. S., Vorup- Jensen T., Höllsberg P. Osteopontin enhances phagocytosis through a novel osteopontin receptor, the αXβ2 integrin // The Journal of Immunology. 2009. V. 182. №11. P. 6943-6950. https://doi.org/10.4049/jimmunol.0900065
  • Weber G. F., Zawaideh S., Hikita S., Kumar V. A., Cantor H., Ashkar S. Phosphorylationdependent interaction of osteopontin with its receptors regulates macrophage migration and activation // Journal of leukocyte biology. 2002. V. 72. №4. P. 752-761. https://doi.org/10.1189/jlb.72.4.752
  • Krishnamurthy P., Peterson J. T., Subramanian V., Singh M., Singh K. Inhibition of matrix metalloproteinases improves left ventricular function in mice lacking osteopontin after myocardial infarction // Molecular and cellular biochemistry. 2009. V. 322. №1. P. 53-62. https://doi.org/10.1007/s11010-008-9939-6
  • Hulsmans M., Sager H. B., Roh J. D., Valero-Muñoz M., Houstis N. E., Iwamoto Y., Nahrendorf M. Cardiac macrophages promote diastolic dysfunction // Journal of Experimental Medicine. 2018. V. 215. №2. P. 423-440. https://doi.org/10.1084/jem.20171274
  • Lenga Y., Koh A., Perera A. S., McCulloch C. A., Sodek J., Zohar R. Osteopontin expression is required for myofibroblast differentiation // Circulation research. 2008. V. 102. №3. P. 319-327. https://doi.org/10.1161/CIRCRESAHA.107.160408
  • Graf K., Do Y. S., Ashizawa N., Meehan W. P., Giachelli C. M., Marboe C. C., Hsueh W. A. Myocardial osteopontin expression is associated with left ventricular hypertrophy // Circulation. 1997. V. 96. №9. P. 3063-3071. https://doi.org/10.1161/01.CIR.96.9.3063
  • Xie Z., Singh M., Singh K. Osteopontin modulates myocardial hypertrophy in response to chronic pressure overload in mice // Hypertension. 2004. V. 44. №6. P. 826-831. https://doi.org/10.1161/01.HYP.0000148458.03202.48
  • Subramanian V., Krishnamurthy P., Singh K., Singh M. Lack of osteopontin improves cardiac function in streptozotocin-induced diabetic mice // American Journal of Physiology-Heart and Circulatory Physiology. 2007. V. 292. №1. P. H673-H683. https://doi.org/10.1152/ajpheart.00569.2006
  • Frangogiannis N. G. The extracellular matrix in ischemic and nonischemic heart failure // Circulation research. 2019. V. 125. №1. P. 117-146. https://doi.org/10.1161/CIRCRESAHA.119.311148
  • Li L., Zhao Q., Kong W. Extracellular matrix remodeling and cardiac fibrosis // Matrix biology. 2018. V. 68. P. 490-506. https://doi.org/10.1016/j.matbio.2018.01.013
  • Burke R. M., Villar K. N. B., Small E. M. Fibroblast contributions to ischemic cardiac remodeling // Cellular signalling. 2021. V. 77. P. 109824. https://doi.org/10.1016%2Fj.cellsig.2020.109824
  • Humeres C., Frangogiannis N. G. Fibroblasts in the infarcted, remodeling, and failing heart // JACC: Basic to Translational Science. 2019. V. 4. №3. P. 449-467. https://doi.org/10.1016/j.jacbts.2019.02.006
  • O'Brien E. R., Garvin M. R., Stewart D. K., Hinohara T., Simpson J. B., Schwartz S. M., Giachelli C. M. Osteopontin is synthesized by macrophage, smooth muscle, and endothelial cells in primary and restenotic human coronary atherosclerotic plaques // Arteriosclerosis and thrombosis: A journal of vascular biology. 1994. V. 14. №10. P. 1648-1656. https://doi.org/10.1161/01.ATV.14.10.1648
  • Kusuyama T., Yoshiyama M., Omura T., Nishiya D., Enomoto S., Matsumoto R., Yoshikawa J. Angiotensin blockade inhibits osteopontin expression in non-infarcted myocardium after myocardial infarction // Journal of pharmacological sciences. 2005. V. 98. №3. P. 283-289. https://doi.org/10.1254/jphs.fp0050056
  • Xie Z., Pimental D. R., Lohan S., Vasertriger A., Pligavko C., Colucci W. S., Singh K. Regulation of angiotensin II‐stimulated osteopontin expression in cardiac microvascular endothelial cells: Role of p42/44 mitogen‐activated protein kinase and reactive oxygen species // Journal of cellular physiology. 2001. V 188. №1. P. 132-138. https://doi.org/10.1002/jcp.1104
  • Sodhi C. P., Phadke S. A., Batlle D., Sahai A. Hypoxia stimulates osteopontin expression and proliferation of cultured vascular smooth muscle cells: potentiation by high glucose // Diabetes. 2001. V. 50. №6. P. 1482-1490. https://doi.org/10.2337/diabetes.50.6.1482
  • Suezawa C., Kusachi S., Murakami T., Toeda K., Hirohata S., Nakamura K., Shiratori Y. Time-dependent changes in plasma osteopontin levels in patients with anterior-wall acute myocardial infarction after successful reperfusion: correlation with left-ventricular volume and function // Journal of Laboratory and Clinical Medicine. 2005. V. 145. №1. P. 33-40. https://doi.org/10.1016/j.lab.2004.08.007
  • Tamura A., Shingai M., Aso N., Hazuku,T., Nasu M. Osteopontin is released from the heart into the coronary circulation in patients with a previous anterior wall myocardial infarction // Circulation journal. 2003. V. 67. №9. P. 742-744. https://doi.org/10.1253/circj.67.742
  • Maniatis K., Siasos G., Oikonomou E., Vavuranakis M., Zaromytidou M., Mourouzis K., Tousoulis D. Osteoprotegerin and osteopontin serum levels are associated with vascular function and inflammation in coronary artery disease patients // Current Vascular Pharmacology. 2020. V. 18. №5. P. 523-530. https://doi.org/10.2174/1570161117666191022095246
  • Georgiadou P., Iliodromitis E. K., Kolokathis F., Varounis C., Gizas V., Mavroidis M., Kremastinos D. T. Osteopontin as a novel prognostic marker in stable ischaemic heart disease: a 3‐ year follow‐up study // European journal of clinical investigation. 2010. V. 40. №4. P. 288-293. https://doi.org/10.1111/j.1365-2362.2010.02257.x
  • Lenga Y., Koh A., Perera A. S., McCulloch C. A., Sodek J., Zohar R. Osteopontin expression is required for myofibroblast differentiation // Circulation research. 2008. V. 102. №3. P. 319-327. https://doi.org/10.1161/CIRCRESAHA.107.160408
  • Spinale F. G. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function // Physiological reviews. 2007. V. 87. №4. P. 1285-1342. https://doi.org/10.1152/physrev.00012.2007
  • Mujumdar V. S., Smiley L. M., Tyagi S. C. Activation of matrix metalloproteinase dilates and decreases cardiac tensile strength // International journal of cardiology. 2001. V. 79. №2-3. P. 277-286. https://doi.org/10.1016/S0167-5273(01)00449-1
  • Pardo A., Gibson K., Cisneros J., Richards T. J., Yang Y., Becerril C., Kaminski N. Upregulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis // PLoS medicine. 2005. V. 2. №9. P. e251. https://doi.org/10.1371/journal.pmed.0020251
  • Elsman P., Vant Hof A. W. J., De Boer M. J., Hoorntje J. C. A., Suryapranata H., Dambrink J. H. E., Zijlstra F. Role of collateral circulation in the acute phase of ST-segmentelevation myocardial infarction treated with primary coronary intervention // European Heart Journal. 2004. V. 25. №10. P. 854-858. https://doi.org/10.1016/j.ehj.2004.03.005
  • Lyle A. N., Joseph G., Fan A. E., Weiss D., Landázuri N., Taylor W. R. Reactive oxygen species regulate osteopontin expression in a murine model of postischemic neovascularization // Arteriosclerosis, thrombosis, and vascular biology. 2012. V. 32. №6. P. 1383-1391. https://doi.org/10.1161/ATVBAHA.112.248922
  • Kahles F., Findeisen H. M., Bruemmer D. Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes // Molecular metabolism. 2014. V. 3. №4. P. 384-393. https://doi.org/10.1016/j.molmet.2014.03.004
  • Zhao X., Johnson J. N., Singh K., Singh M. Impairment of myocardial angiogenic response in the absence of osteopontin // Microcirculation. 2007. V. 14. №3. P. 233-240.
  • Seo K. W., Lee S. J., Ye B. H., Kim Y. W., Bae S. S., Kim C. D. Mechanical stretch enhances the expression and activity of osteopontin and MMP-2 via the Akt1/AP-1 pathways in VSMC // Journal of molecular and cellular cardiology. 2015. V. 85. P. 13-24. https://doi.org/10.1016/j.yjmcc.2015.05.006
  • Rosenberg M., Zugck C., Nelles M., Juenger C., Frank D., Remppis A., Frey N. Osteopontin, a new prognostic biomarker in patients with chronic heart failure // Circulation: Heart Failure. 2008. V. 1. №1. P. 43-49. https://doi.org/10.1161/CIRCHEARTFAILURE.107.746172
  • López B., González A., Lindner D., Westermann D., Ravassa S., Beaumont J., .Díez J. Osteopontin-mediated myocardial fibrosis in heart failure: a role for lysyl oxidase? // Cardiovascular research. 2013. V. 99. №1. P. 111-120. https://doi.org/10.1093/cvr/cvt100
  • Francia P. et al. Osteopontin and galectin‐3 predict the risk of ventricular tachycardia and fibrillation in heart failure patients with implantable defibrillators // Journal of cardiovascular electrophysiology. 2014. V. 25. №6. P. 609-616. https://doi.org/10.1111/jce.12364
Еще
Статья научная