Overall review the current tend and difficulties of antimicrobial compounds in composite food packaging applications

Бесплатный доступ

Food waste/spoilage caused by microbial cell has recently emerged as a major food insecurity and environmental concern. Additionally, food spoilage contributes to the economic crisis and healthy problems. As a result, an active packaging system is still required to keep the food safe and to protect its quality from foreign contaminants. The purpose of this review was to summarize the current solutions and difficulties of antimicrobial compounds in composite food packaging applications. Specifically, the extrusion and antimicrobial coating methods for incorporating antimicrobial compounds into packaging systems and their optimum processing parameters for common polymer composites were revealed. The common inorganic and organic antimicrobial substances/compounds with their quantities adding to the packaging system and their antimicrobial activity (reduction, partially deactivation and completely deactivation) were presented. The difficulties in creating a package with antimicrobial properties concerning issues of migration of antimicrobial additives from the package to the food product, accumulation of antimicrobial additives in the food product, as well as their processing temperature were elaborated. Therefore, this review work contributes to open up the entire scientific knowledge on antimicrobial compounds used in polymer composite materials for food packaging application and helps to develop important results for large scale operations

Еще

Antimicrobial compounds, microorganisms, composites, food spoilage, food packaging, challenges

Короткий адрес: https://sciup.org/140297637

IDR: 140297637   |   DOI: 10.20914/2310-1202-2022-3-204-213

Список литературы Overall review the current tend and difficulties of antimicrobial compounds in composite food packaging applications

  • World Health Organization. WHO model list of essential medicines - 22nd list, 2021. Technical Document 2021.
  • Morris M.A., Padmanabhan S.C., Cruz-Romero M.C., Cummins E. et al. Development of active, nanoparticle, antimicrobial technologies for muscle-based packaging applications. Meat Sci. 2017. vol. 132. pp. 163-78. https://doi.org/10.1016/j.meatsci.2017.04.234
  • Saravanan A., Kumar P.S., Hemavathy R.V., Jeevanantham S. et al. Methods of detection of food-borne pathogens: a review. Environmental Chemistry Letters. 2021. vol. 19. no. 1. pp. 189-207. https://doi.org/10.1007/s10311-020-01072z
  • Nile S. H. et al. Nanotechnologies in food science: applications, recent trends, and future perspectives. Nano-micro letters. 2020. vol. 12. no. 1. pp. 1-34. https://doi.org/10.1007/s40820-020-0383-9
  • Alabi O.A., Ologbonjaye K.I., Awosolu O., Alalade O.E. Public and environmental health effects of plastic wastes disposal: a review. J Toxicol Risk Assess. 2019. vol. 5. no. 021. pp. 1-13. https://doi.org/10.23937/2572-4061.1510021
  • Hong L.G., Yuhana N.Y., Zawawi E.Z.E. Review of bioplastics as food packaging materials. AIMS Mater Sci. 2021. vol. 8. pp. 166-184. https://doi.org/10.3934/matersci.2021012
  • Gutiérrez T.J. Polymers for food applications: News. Polymers for food applications. Springer, Cham, 2018. pp. 1-4. https://doi.org/10.1007/978-3-319-94625-2
  • Grönman K., Soukka R., Järvi-Kääriäinen T., Katajajuuri J.M. et al. Framework for sustainable food packaging design. Packaging Technology and Science. 2013. vol. 26. https://doi.org/10.1002/pts.1971
  • Jariyasakoolroj P., Leelaphiwat P., Harnkarnsujarit N. Advances in research and development of bioplastic for food packaging. Journal of the Science of Food and Agriculture. 2020. vol. 100. no. 14. pp. 5032-5045. https://doi.org/10.1002/jsfa.9497.
  • Debeaufort F. Active biopackaging produced from by‐products and waste from food and marine industries. FEBS Open bio. 2021. vol. 11. no. 4. pp. 984-998. https://doi.org/10.1002/2211-5463.13121
  • Arfat Y.A., Ejaz M., Jacob H., Ahmed J. Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material. Carbohydrate Polymers. 2017. vol. 157. pp. 65-71. https://doi.org/10.1016/j.carbpol.2016.09.069.
  • Siripatrawan U, Kaewklin P. Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocoll. 2018. vol. 84. https://doi.org/10.1016/j.foodhyd.2018.04.049.
  • Nouri A., Yaraki M.T., Ghorbanpour M., Agarwal S. et al. Enhanced Antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite. International Journal of Biological Macromolecules. 2018. vol. 109. pp. 1219-1231. https://doi.org/10.1016/j.ijbiomac.2017.11.119.
  • Salmas C., Giannakas A., Katapodis P., Leontiou A. et al. Development of ZnO/Na-montmorillonite hybrid nanostructures used for PVOH/ZnO/Na-montmorillonite active packaging films preparation via a melt-extrusion process. Nanomaterials. 2020. vol. 10. no. 6. pp. 1079. https://doi.org/10.3390/nano10061079
  • Xing Y., Xu Q., Li X., Chen C. et al. Chitosan-based coating with antimicrobial agents: Preparation, property, mechanism, and application effectiveness on fruits and vegetables. Int J Polym Sci. 2016. vol. 2016. https://doi.org/10.1155/2016/4851730.
  • Yu H.H., Kim Y.J., Park Y.J., Shin D.M. et al. Application of mixed natural preservatives to improve the quality of vacuum skin packaged beef during refrigerated storage. Meat Sci. 2020. vol. 169. https://doi.org/10.1016/j.meatsci.2020.108219
  • Huang T., Qian Y., Wei J., Zhou C. Polymeric Antimicrobial food packaging and its applications. Polymers (Basel). 2019. vol. 11. https://doi.org/10.3390/polym11030560
  • Liang S., Wang L. A natural antibacterial-antioxidant film from soy protein isolate incorporated with cortex Phellodendron extract. Polymers (Basel). 2018. vol. 10. https://doi.org/10.3390/polym10010071
  • Nguyen T.T., Dao U.T.T., Bui Q.P.T., Bach G.L.et al. Enhanced antimicrobial activities and physiochemical properties of edible film based on chitosan incorporated with Sonneratia caseolaris (L.) Engl. leaf extract. Progress in Organic Coatings. 2020. vol. 140. pp. 105487. https://doi.org/10.1016/j.porgcoat.2019.105487
  • Gingasu D., Mindru I., Patron L., Ianculescu A. et al. Synthesis and characterization of chitosan-coated cobalt ferrite nanoparticles and their antimicrobial activity. Journal of Inorganic and Organometallic Polymers and Materials. 2018. vol. 28. no. 5. pp. 1932-1941. https://doi.org/10.1007/s10904-018-0870-3
  • Sofi S.A., Singh J., Rafiq S., Ashraf U. et al. A comprehensive review on antimicrobial packaging and its use in food packaging. Current Nutrition & Food Science. 2018. vol. 14. no. 4. pp. 305-312. https://doi.org/10.2174/1573401313666170609095732
  • Mirabelli V., Majidi Salehi S., Angiolillo L., Belviso B.D. et al. Enzyme crystals and hydrogel composite membranes as new active food packaging material. Global Challenges. 2018. vol. 2. no. 1. pp. 1700089. https://doi.org/10.1002/gch2.201700089.
  • Galante Y.M., Merlini L., Silvetti T., Campia P. et al. Enzyme oxidation of plant galactomannans yielding biomaterials with novel properties and applications, including as delivery systems. Applied microbiology and biotechnology. 2018. vol. 102. no. 11. pp. 4687-4702. https://doi.org/10.1007/s00253-018-9028z
  • Avramescu S.M., Butean C., Popa C.V., Ortan A. et al. Edible and functionalized films/coatings-performances and perspectives. Coatings. 2020. vol. 10. https://doi.org/10.3390/coatings10070687
  • Saadat S., Pandey G., Tharmavaram M., Braganza V. et al. Nano-interfacial decoration of Halloysite Nanotubes for the development of antimicrobial nanocomposites. Adv Colloid Interface Sci. 2020. vol. 275. https://doi.org/10.1016/j.cis.2019.102063.
  • Arsenie L.V., Lacatusu I., Oprea O., Bordei N. et al. Azelaic acid-willow bark extract-panthenol-Loaded lipid nanocarriers improve the hydration effect and antioxidant action of cosmetic formulations. Industrial Crops and Products. 2020. vol. 154. pp. 112658. https://doi.org/10.1016/j.indcrop.2020.112658.
  • Realini C.E., Marcos B. Active and intelligent packaging systems for a modern society. Meat Sci. 2014. vol. 98. https://doi.org/10.1016/j.meatsci.2014.06.031
  • Feng K., Wen P., Yang H., Li N. et al. Enhancement of the antimicrobial activity of cinnamon essential oil-loaded electrospun nanofilm by the incorporation of lysozyme. RSC advances. 2017. vol. 7. no. 3. pp. 1572-1580. https://doi.org/10.1039/c6ra25977d.
  • He S., Yang Q., Ren X., Zi J. et al. Antimicrobial efficiency of chitosan solutions and coatings incorporated with clove oil and/or ethylenediaminetetraacetate. Journal of Food Safety. 2014. vol. 34. no. 4. pp. 345-352. https://doi.org/10.1111/jfs.12134
  • Mulla M., Ahmed J., Al-Attar H., Castro-Aguirre E. et al. Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Control. 2017. vol. 73. pp. 663-671. https://doi.org/10.1016/j.foodcont.2016.09.018
  • Radulescu M., Popescu S., Ficai D., Sonmez M. et al. Advances in Drug Delivery Systems, from 0 to 3D superstructures. Curr Drug Targets. 2016. vol. 19. https://doi.org/10.2174/1389450117666160401122926
  • Lopes F.A., de Fátima Ferreira Soares N., de Cássia Pires Lopes C., da Silva W.A. et al. Conservation of bakery products through cinnamaldehyde antimicrobial films. Packaging Technology and Science. 2014. vol. 27. https://doi.org/10.1002/pts.2033.
  • Mihaly-Cozmuta A., Peter A., Craciun G., Falup A. et al. Preparation and characterization of active cellulose-based papers modified with TiO2, Ag and zeolite nanocomposites for bread packaging application. Cellulose. 2017. vol. 24. https://doi.org/10.1007/s10570-017-1383x
  • Al-Naamani L., Dutta J., Dobretsov S. Nanocomposite zinc oxide-chitosan coatings on polyethylene films for extending storage life of okra (Abelmoschus esculentus). Nanomaterials. 2018. vol. 8. https://doi.org/10.3390/nano8070479
  • Xing Y., Li X., Guo X., Li W. et al. Effects of different tio2 nanoparticles concentrations on the physical and antibacterial activities of chitosan-based coating film. Nanomaterials. 2020. vol. 10. https://doi.org/10.3390/nano10071365
  • Xing Y., Li W., Wang Q., Li X. et al. Antimicrobial nanoparticles incorporated in edible coatings and films for the preservation of fruits and vegetables. Molecules. 2019. vol. 24. https://doi.org/10.3390/molecules24091695
  • Sun L., Yang S., Qian X., An X. High-efficacy and long-term antibacterial cellulose material: anchored guanidine polymer via double “click chemistry.” Cellulose. 2020. vol. 27. https://doi.org/10.1007/s10570-020-03374-5
  • Jouneghani R.S., Castro A.H.F., Panda S.K., Swennen R. et al. Antimicrobial activity of selected banana cultivars against important human pathogens, including candida biofilm. Foods. 2020. vol. 9. https://doi.org/10.3390/foods9040435.
  • Chaudhry Q., Scotter M., Blackburn J., Ross B. et al. Food Additives and Contaminants Applications and implications of nanotechnologies for the food sector. Taylor & Francis. 2008. vol. 25.
  • Silvestre C., Duraccio D., Cimmino S. Food packaging based on polymer nanomaterials. Progress in polymer science. 2011. vol. 36. no. 12. pp. 1766-1782. https://doi.org/10.1016/j.progpolymsci.2011.02.003.
  • Salleh E., Muhamad I.I. Starch‐based Antimicrobial Films Incorporated with Lauric Acid and Chitosan. AIP Conference Proceedings. American Institute of Physics, 2010. vol. 1217. no. 1. pp. 432-436. https://doi.org/10.1063/1.3377861
  • Joerger R.D., Sabesan S., Visioli D., Urian D. et al. Antimicrobial activity of chitosan attached to ethylene copolymer films. Packaging Technology and Science. 2009. vol. 22. https://doi.org/10.1002/pts.822
  • Jin T., Gurtler J.B. Inactivation of Salmonella in liquid egg albumen by antimicrobial bottle coatings infused with allyl isothiocyanate, nisin and zinc oxide nanoparticles. J Appl Microbiol. 2011. vol. 110. https://doi.org/10.1111/j. 1365-2672.2011.04938.x
  • Jin T. Inactivation of Listeria monocytogenes in Skim Milk and Liquid Egg White by Antimicrobial Bottle Coating with Polylactic Acid and Nisin. J Food Sci. 2010. vol. 75. https://doi.org/10.1111/j. 1750-3841.2009.01480.x
  • Makwana S., Choudhary R., Kohli P. Advances in Antimicrobial Food Packaging with Nanotechnology and Natural Antimicrobials. International Journal of Food Science and Nutrition Engineering. 2015. vol. 2015. pp. 169-175. https://doi.org/10.5923/j.food.20150504.02
  • Nielsen P. V., Rios R. Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. International journal of food microbiology. 2000. vol. 60. no. 2-3. pp. 219-229. https://doi.org/10.1016/S0168-1605(00)00343-3
  • Dahham S.S., Ali M.N., Tabassum H., Khan M. Studies on antibacterial and antifungal activity of pomegranate (Punica granatum L.). Am. Eurasian J. Agric. Environ. Sci. 2010. vol. 9. no. 3. pp. 273-281.
  • Nirmala J.G., Narendhirakannan R.T. In vitro antioxidant and antimicrobial activities of grapes (Vitis vinifera L) seed and skin extracts-Muscat variety. Int J Pharm Pharm Sci. 2011. vol. 3. no. 4. pp. 242-249.
  • Céspedes C.L., Avila J.G., Martínez A., Serrato B. et al. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). J Agric Food Chem. 2006. vol. 54. https://doi.org/10.1021/jf053071w
  • Markín D., Duek L., Berdícevsky I. In vitro antimicrobial activity of olive leaves. Mycoses. 2003. vol. 46. https://doi.org/10.1046/j. 1439-0507.2003.00859.x
  • Rai M., Ingle A.P., Gupta I., Pandit R. et al. Smart nano packaging for the enhancement of food shelf lifE. Environ Chem Lett. 2019. vol. 17. https://doi.org/10.1007/s10311-018-0794-8
  • Vilas C., Mauricio-Iglesias M., García M. R. Model-based design of smart active packaging systems with antimicrobial activity. Food Packaging and Shelf Life. 2020. vol. 24. pp. 100446. https://doi.org/10.1016/j.fpsl.2019.100446
  • Szabo K., Teleky B.E., Mitrea L., Călinoiu L.F. et al. Active packaging-poly (vinyl alcohol) films enriched with tomato by-products extract. Coatings. 2020. vol. 10. https://doi.org/10.3390/coatings10020141
  • Motelica L., Ficai D., Oprea O.C., Ficai A. et al. Smart food packaging designed by nanotechnological and drug delivery approaches. Coatings. 2020. vol. 10. https://doi.org/10.3390/COATINGS10090806.
  • Shruthy R., Jancy S., Preetha R. Cellulose nanoparticles synthesized from potato peel for the development of active packaging film for enhancement of shelf life of raw prawns (Penaeus monodon) during frozen storage. Int J Food Sci Technol. 2021. vol. 56. https://doi.org/10.1111/ijfs.14551
  • Ramos M., Beltran A., Fortunati E., Peltzer M.A. et al. Controlled release of thymol from poly (Lactic acid) - based silver nanocomposite films with antibacterial and antioxidant activity. Antioxidants. 2020. vol. 9. https://doi.org/10.3390/antiox9050395.
  • Settier-Ramírez L., López-Carballo G., Gavara R., Hernández-Muñoz P. PVOH/protein blend films embedded with lactic acid bacteria and their antilisterial activity in pasteurized milk. Int J Food Microbiol. 2020. vol. 322. https://doi.org/10.1016/j.ijfoodmicro.2020.108545.
  • Surendhiran D., Li C., Cui H., Lin L. Fabrication of high stability active nanofibers encapsulated with pomegranate peel extract using chitosan/PEO for meat preservation. Food Packag Shelf Life. 2020. vol. 23. https://doi.org/10.1016/j.fpsl.2019.100439.
  • Pan Y., Xia Q., Xiao H. Cationic polymers with tailored structures for rendering polysaccharide-based materials antimicrobial: An overview. Polymers (Basel). 2019. vol. 11. https://doi.org/10.3390/polym11081283
  • Yildirim S., Röcker B., Pettersen M.K., Nilsen-Nygaard J. et al. Active Packaging Applications for Food. Compr Rev Food Sci Food Saf. 2018. vol. 17. https://doi.org/10.1111/1541-4337.12322
  • Zhang Z., Wang X., Gao M., Zhao Y. et al. Sustained release of an essential oil by a hybrid cellulose nanofiber foam system. Cellulose. 2020. vol. 27. https://doi.org/10.1007/s10570-019-02957-1
  • Vermeiren L., Devlieghere F., Debevere J. Effectiveness of some recent antimicrobial packaging concepts. Food Addit Contam. 2002. vol. 19. https://doi.org/10.1080/02652030110104852
  • Brockgreitens J., Abbas A. Responsive Food Packaging: Recent Progress and Technological Prospects. Compr Rev Food Sci Food Saf. 2016. vol. 15. https://doi.org/10.1111/1541-4337.12174
  • Ren G., Hu D., Cheng E.W.C., Vargas-Reus M.A. et al. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents. 2009. vol. 33. https://doi.org/10.1016/j.ijantimicag.2008.12.004
  • Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008. vol. 4. https://doi.org/10.1016/j.actbio.2007.11.006
  • Wang R.H., Xin J.H., Tao X.M. UV-blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics. Inorg Chem. 2005. vol. 44. https://doi.org/10.1021/ic0503176
  • Kim B., Kim D., Cho D., Cho S. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere. 2003. vol. 52. https://doi.org/10.1016/S0045-6535(03)00051-1
  • Gamage G.R., Park H.J., Kim K.M. Effectiveness of antimicrobial coated oriented polypropylene/polyethylene films in sprout packaging. Food Research International. 2009. vol. 42. https://doi.org/10.1016/j.foodres.2009.03.012
  • Kanmani P., Rhim J.W. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr Polym. 2014. vol. 106. https://doi.org/10.1016/j.carbpol.2014.02.007
  • Wang X.I.I., Song X.J., Zhang D.J., Li Z.J. et al. Preparation and characterization of natamycin-incorporated agar film and its application on preservation of strawberries. Food Packag Shelf Life. 2022. vol. 32. pp. 100863. https://doi.org/10.1016/j.fpsl.2022.100863.
  • Iijima M., Kamiya H. Layer-by-layer surface modification of functional nanoparticles for dispersion in organic solvents. Langmuir. 2010. vol. 26. https://doi.org/10.1021/la1030747
  • Gómez-Estaca J., López-de-Dicastillo C., Hernández-Muñoz P., Catalá R. et al. Advances in antioxidant active food packaging. Trends Food Sci Technol. 2014. vol. 35. https://doi.org/10.1016/j.tifs.2013.10.008
  • Ha J.U., Kim Y.M., Lee D.S. Multilayered antimicrobial polyethylene films applied to the packaging of ground beef. Packaging Technology and Science. 2001. vol. 14. https://doi.org/10.1002/pts.537.
  • Solano A.C.V., de Gante C.R. Two Different Processes to Obtain Antimicrobial Packaging Containing Natural Oils. Food Bioproc Tech. 2012. vol. 5. https://doi.org/10.1007/s11947-011-0626-3
  • Torlak E., Nizamlioǧlu M. Antimicrobial effectiveness of chitosan-essential oil coated plastic films against foodborne pathogens. Journal of Plastic Film and Sheeting. 2011. voi. 27. https://doi.org/10.1177/8756087911407391
  • Muriel-Galet V., Cerisuelo J.P., López-Carballo G., Aucejo S. et al. Evaluation of EVOH-coated PP films with oregano essential oil and citral to improve the shelf-life of packaged salad. Food Control. 2013. vol. 30. https://doi.org/10.1016/j.foodcont.2012.06.032.
  • Ye M., Neetoo H., Chen H. Control of Listeria monocytogenes on ham steaks by antimicrobials incorporated into chitosan-coated plastic films. Food Microbiol. 2008. vol. 25. https://doi.org/10.1016/j.fm.2007.10.014
  • Ferrari M.C., Carranza S., Bonnecaze R.T., Tung K.K. et al. Modeling of oxygen scavenging for improved barrier behavior: Blend films. J Memb Sci. 2009. vol. 329. https://doi.org/10.1016/j.memsci.2008.12.030
  • Tan C., Han F., Zhang S., Li P. et al. Molecular Sciences Novel Bio-Based Materials and Applications in Antimicrobial Food Packaging: Recent Advances and Future Trends. Int J Mol Sci. 2021. vol. 22. pp. 9663. https://doi.org/10.3390/ijms.
  • Anitha S., Brabu B., Thiruvadigal D.J., Gopalakrishnan C. et al. Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydrate polymers. 2012. vol. 87. no. 2. pp. 1065-1072. https://doi.org/10.1016/j.carbpol.2012.12.020.
  • Gharoy Ahangar E., Abbaspour-Fard M.H., Shahtahmassebi N., Khojastehpour M. et al. Preparation and Characterization of PVA/ZnO NanocompositE. J Food Process Preserv. 2015. vol. 39. https://doi.org/10.1111/jfpp.12363.
  • Paisoonsin S., Pornsunthorntawee O., Rujiravanit R. Preparation and characterization of ZnO-deposited DBD plasma-treated PP packaging film with antibacterial activities. Appl Surf Sci. 2013. vol. 273. https://doi.org/10.1016/j.apsusc.2013.03.026
  • Li X., Feng, X.Q., Yang S., Fu G.Q. et al. Chitosan kills Escherichia coli through damage to be of cell membrane mechanism. Carbohydrate Polymers. 2010. vol. 79. no. 3. pp. 493-499. https://doi.org/10.1016/j.carbpol.2009.07.011
  • Shi L.E. Li Z.H., Zheng W., Zhao Y.F. et al. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Additives & Contaminants: Part A. 2014. vol. 31. no. 2. pp. 173-186. https://doi.org/10.1080/19440049.2013.865147.
  • Bassani A., Montes S., Jubete E., Palenzuela J. et al. Incorporation of waste orange peels extracts into PLA films. Chem Eng Trans. 2019. vol. 74. https://doi.org/10.3303/CET1974178
  • Moyssiadi T., Badeka A., Kondyli E., Vakirtzi T. et al. Effect of light transmittance and oxygen permeability of various packaging materials on keeping quality of low-fat pasteurized milk: Chemical and sensorial aspects. Int Dairy J. 2004. vol. 14. https://doi.org/10.1016/j.idairyj.2003.09.001
  • Han G., Guo R., Yu Z., Chen G. Progress on biodegradable films for antibacterial food packaging. E3S Web of Conferences. 2020. vol. 145. https://doi.org/10.1051/e3sconf/202014501036
  • Byun Y., Kim Y.T., Whiteside S. Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder. J Food Eng. 2010. vol. 100. https://doi.org/10.1016/j.jfoodeng.2010.04.005
  • Sobhan A., Muthukumarappan K., Wei L. Biosensors and biopolymer-based nanocomposites for smart food packaging: Challenges and opportunities. Food Package Shelf Life. 2021. vol. 30. https://doi.org/10.1016/j.fpsl.2021.100745
  • Motelica L., Ficai D., Ficai A., Oprea O.C. et al. Biodegradable antimicrobial food packaging: Trends and perspectives. Foods. 2020. vol. 9. https://doi.org/10.3390/foods9101438
  • Youssef A.M., El-Sayed S.M. Bio nanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydr Polym. 2018. vol. 193. https://doi.org/10.1016/j.carbpol.2018.03.088
  • Sanuja S., Agalya A., Umapathy M.J. Synthesis and characterization of zinc oxide-neem oil-chitosan bionanocomposite for food packaging application. Int J Biol Macromol. 2015. vol. 74. https://doi.org/10.1016/j.ijbiomac.2014.11.036
Еще
Статья научная