Overview of research on heat transfer technology for reinforcement of shell and tube heat exchanger

Автор: He Fang, Makeev Andrei

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Технические науки

Статья в выпуске: 6 т.6, 2020 года.

Бесплатный доступ

The progress made in recent years in the field of reinforced heat transfer technology of shell and tube heat exchangers in China and abroad is reviewed. The energy-saving means and results of improving the heat transfer efficiency of shell and tube heat exchangers are introduced from the experimental research and numerical simulation respectively, and the future research of shell and tube heat exchangers to strengthen the heat transfer technology is also foreseen.

Tube and shell heat exchanger, intensified heat transfer technology, experimental research, numerical simulation

Короткий адрес: https://sciup.org/14116267

IDR: 14116267   |   DOI: 10.33619/2414-2948/55/20

Список литературы Overview of research on heat transfer technology for reinforcement of shell and tube heat exchanger

  • Bergelin O. P. Heat transfer and fluid friction during flow across banks of tubes-IV a study of the transition zone between viscous and turbulent flow // ASME Transactions. 1952. V. 74. P. 953-960. https://doi/ DOI: 10.11357/jsam1937.58.6_39
  • Bergelin O. P., Brown G. A., Hull H. L., Sullivan F. W. Heat transfer and fluid friction during viscous flow across banks of tubes: III-a study of tube spacing and tube size // ASME Transactions. 1950. V. 72. P. 881-888.
  • Tinker T. Shell side heat transfer characteristics // Heat Transfer Lectures. 1948. V. 2.
  • Palen J. W., Taborek J. Solution of shell side flow pressure drop and heat transfer by stream analysis method // Chemical Engineering Progress Symposium Series. 1969. V. 65. №92. P. 53-63.
  • Bell K. J., Shah R. K., Subbarao E. C., Mashelkar R. A. Delaware method for shell-side design. Heat Transfer Equipment Design. New York: Hemisphere Publishing, 1988. 145 p.
  • Gupta R. K., Katz D. L. Flow patterns for predicting shell-side heat transfer coefficients for baffled shell-and-tube exchangers // Industrial & Engineering Chemistry. 1957. V. 49. №6. P. 998-999.
  • DOI: 10.1021/ie50570a032
  • Berner C., Durst F., McEligot D. M. Flow around baffles // J. Heat Transfer. 1984. V. 106. №4. P. 743-749.
  • DOI: 10.1115/1.3246747
  • Galindo P. Internal heat transfer and pressure drop measurements in a variously baffled shell and tube heat exchanger: Ph.D. thesis. 1984.
  • Murray P. W. Flow and pressure drop on the shellside of cylindrical heat exchangers: Dr. diss. Aston University, 1988.
  • Pekdemir T., Davies T. W., Haseler L. E., Diaper A. D. Flow distribution on the shellside of a cylindrical shell and tube heat exchanger // International journal of heat and fluid flow. 1993. V. 14. №1. P. 76-85.
  • DOI: 10.1016/0142-727X(93)90043-M
  • Pekdemir T., Davies T. W., Haseler L. E., Diaper A. D. Pressure drop measurements on the shell side of a cylindrical shell-and-tube heat exchanger // Heat transfer engineering. 1994. V. 15. №3. P. 42-56.
  • DOI: 10.1080/01457639408939830
  • Stehlik P., Němčanský J., Kral D., Swanson L. W. Comparison of correction factors for shell-and-tube heat exchangers with segmental or helical baffles // Heat transfer engineering. 1994. V. 15. №1. P. 55-65.
  • DOI: 10.1080/01457639408939818
  • Kral D., Stehlik P., Van Der Ploeg H. J., Master B. I. Helical baffles in shell-and-tube heat exchangers, Part I: Experimental verification // Heat transfer engineering. 1996. V. 17. №1. P. 93-101.
  • DOI: 10.1080/01457639608939868
  • Tutkun O. Condensate Flow Pattern of Immiscible Liquid Mixtures // Two-Phase Flow Heat Exchangers. NATO ASI Series (Series E: Applied Sciences) / ed. by Kakaç S., Bergles A. E., Fernandes E. O. V. 143. Dordrecht: Springer, 1988.
  • DOI: 10.1007/978-94-009-2790-2_9
  • Yang X., Wang Q., Wang S. Prediction Model and Measurement of Single Phase Pressure Drop on Shell-Side of TEMA-F Heat Exchanger // Journal of Chemical Industry and Engineering-China. 1996. V. 47. P. 332-339.
  • Chai L., Xia G., Li J., Zhou M. Flow pattern and evolvement characteristics of two-phase flow in microchannel with periodic expansion-constriction cross sections // CIESC Journal. 2013. №6. P. 22.
  • Zhang J. F., He Y. L., Tao W. Q. 3D numerical simulation on shell-and-tube heat exchangers with middle-overlapped helical baffles and continuous baffles. Part I: Numerical model and results of whole heat exchanger with middle-overlapped helical baffles // International Journal of Heat and Mass Transfer. 2009. V. 52. №23-24. P. 5371-5380.
  • DOI: 10.1016/j.ijheatmasstransfer.2009.07.006
  • Xia L.-R, Yue X.-M, Liu M.-S. Numerical simulation and structural optimization of tapered jacket-type flow distributor in heat exchanger // Petrochemical Equipment. 2007. V. 36. P. 46-50.
  • Xie Gongnan, Peng B.-T., Chen Q.-Y., Wang Qiuwang, Luo Laiqin, Huang Y.-P., Xiao Ze-Jun. Experimental study and prediction of pressure drop and heat transfer in shell-side of tube-and-shell heat exchangers. 2006. V. 26. P. 104-108.
  • Xie Guoxiong, Yu Jiuyang. The effect of heat transfer and flow resistance on heat exchanger performance by folding plate opening under liquid-liquid medium. Wuhan: Wuhan University, 2006.
  • Patankar S. V., Spalding D. B. A calculation procedure for the transient and steady-state behaviour of shell-and-tube heat exchangers. Imperial College of Science and Technology, Department of Mechanical Engineering, 1972.
  • Gentry C. C. RODbaffle heat exchanger technology // Chemical Engineering Progress. 1990. V. 86. №7.
  • Zhang C., Sousa A. C. M. Numerical Predictions of Shellside Flow in a Model of a Disc-and-Doughnut Heat Exchanger // Proc. 9th Brazilian Congress of Mechanical Engineering. 1987. V. 1. P. 7-11.
  • Zhang C. Numerical modeling using a quasi-three-dimensional procedure for large power plant condensers // J. Heat Transfer. 1994. V. 116. №1. P. 180-188.
  • DOI: 10.1115/1.2910854
  • Prithiviraj M., Andrews M. J. Three dimensional numerical simulation of shell-and-tube heat exchangers. Part I: foundation and fluid mechanics // Numerical Heat Transfer, Part A Applications. 1998. V. 33. №8. P. 799-816.
  • DOI: 10.1080/10407789808913967
  • Ko J. H., Ewing M. E., Guezennec Y. G., Christensen R. N. Development of a low Reynolds number enhanced heat transfer surface using flow visualization techniques // International Journal of Heat and fluid flow. 2002. V. 23. №4. P. 444-454.
  • DOI: 10.1016/S0142-727X(01)00140-0
  • Xing-Hua H. A numerical study of turbulent flow at the shell side of a tube-shell heat exchanger and two-phase flow of vapor and liquid in a condenser. Postdoctoral Thesis, Shanghai Jiao Tong University. 2000.
  • Xie H., Gao Z. Three dimensional numerical simulation of flow in the shell-tube heat exchanger // Chinese Journal of Nuclear Science and Engineering. 2002. V. 22. №3. P. 240-243.
  • Deng B., Tao, W. Numerical simulation and experimental study on turbulent flow in shell side of shell-and-tube heat exchangers // Journal of Xi'an Jiaotong University. 2003. V. 37. P. 889-893+924.
  • Dong Q., Liu M., Su L. Research on the Progress of Shell and Tube Heat Exchanger // Inner Mongolia Petrochemical Industry. 2006. V. 1.
  • Hu Yan, Sun Zh. Influence of refractive plate structure on shell and tube heat exchanger shell process flow and heat transfer // Applied Science and Technology. 2007. V. 9. №30. P. 14
  • Gu Xin, Dong Q. W. A numerical simulation study of the flow and temperature fields at the side of a shell and tube heat exchanger based on a 3D solid model. 2008
  • Gao Hongyu. Study of curved bowed refolded plate heat exchanger. Beijing: Beijing University of Chemical Technology, 2010.
  • Liu Lei, Song Tianmin, Guan Jianjun. FLUENT-based numerical simulation and analysis of the shell and tube heat exchanger shell process flow field // Light Industrial Machinery. 2012. V. 30. №1. P. 18-21.
Еще
Статья обзорная