Oxidation of tri( o-tolyl)antimony by tert-butyl hydroperoxide. Molecular structures of bis[µ 2-oxo-tri(o-tolyl)antimony] and µ 2-oxo- bis[( tert-butylperoxy)tri( o-tolyl)antimony]

Бесплатный доступ

Tri( o-tolyl)antimony oxidation by equimolar amount of tert-butyl hydroperoxide in diethyl ether led to the formation of bis[µ 2-oxo-tri( o-tolyl)antimony] (1). At the molar ratio of reactants 1:2 or 1:4 µ 2-oxo- bis[( tert-butylperoxy)tri( o-tolyl)antimony] (2) has been formed. According to the X-ray analysis data, antimony atoms are in the trigonal bipyramidal coordination in molecules 1 and 2. The bond lengths Sb-O vary within the ranges 1.937(2)-2.078(2) Å (1) and 1.975(17)-2.216(15) Å (2).

Tri(ortho-tolyl)antimony, tert-butyl hydroperoxide, oxidation, bis[µ2-oxo-tri(o-tolyl)antimony], µ2-oxo-bis[(tert-butylperoxy)tri(o-tolyl)antimony], molecular structures, x-ray analysis

Короткий адрес: https://sciup.org/147160326

IDR: 147160326   |   DOI: 10.14529/chem150404

Текст научной статьи Oxidation of tri( o-tolyl)antimony by tert-butyl hydroperoxide. Molecular structures of bis[µ 2-oxo-tri(o-tolyl)antimony] and µ 2-oxo- bis[( tert-butylperoxy)tri( o-tolyl)antimony]

Synthesis of bis [ µ 2 -oxo-tri( o -tolyl)antimony] (1). Tri(o-tolyl)antimony (200 mg, 0.50 mmol) was dissolved in diethyl ether (20 mL). Then tert -butyl hydroperoxide (66 mg of 70 % aqueous solution, 0.50 mmol) was added. The solution was left to stand for 24 hours at temperature 20 °С. When the solvent evaporated, colourless cristalline substance 1 was obtained; the product yield was 199 mg (95 %), MP: 216 °C.

IR spectrum (ν, cm - 1): 3048, 2921, 2854, 1584, 1446,1280, 1202, 1160, 1120, 1031,935, 918, 890,764, 750, 740, 655, 636, 491, 471, 435.

Synthesis of µ 2 -oxo- bis [( tert -butylperoxy)tri( o -tolyl)antimony] 2. Tri(o-tolyl)antimony (200 mg, 0.50 mmol) was dissolved in diethyl ether (20 mL). Then tert -butyl hydroperoxide (132 mg of 70 % aqueous solution, 1.00 mmol) was added. The solution was left to stand for 24 hours at temperature 20 °С. Colorless crystals 2 were obtained; yield 230 mg (92 %), MP: 162 °C.

The reaction with the molar ratio 1:4 was carried out at the same conditons. The product yield of substance 2 was 87 %.

IR spectrum of the substunce 1 was recorded on the Bruker Tensor 27 FT-IR (KBr pellets; 4000 - 400 cm - 1).

The X-ray diffraction analyses of crystalline substances 1 and 2 were made on the Bruker D8 QUEST automatic four-circle diffractometer (Mo K α -emission, λ = 0.71073 Å, graphite monochromator). The data were collected and analyzed, the unit cell parameters were refined, and the absorption correction was applied using the SMART and SAINT-Plus programs [16]. All calculations for structure determination and refinement were performed using the SHELXL/PC programs [17]. The structures 1 and 2 were determined by the direct method and refined by the least-squares method in the anisotropic approximation for non-hydrogen atoms.

The main crystallographic data and refinement results for structures 1 and 2 are listed in Table 1. The selected bond lengths and bond angles are given in Table 2.

Table 1

Crystallographic data and the experimental and structure refinement parameters for compound 1

Parameter

Value

1

2

Empirical formula

C 42 H 42 O 2 Sb 2

C 50 H 60 O 5 Sb 2

Formula weight

822.26

984.48

Т , К

296(2)

296(2)

Crystal system

Triclinic

Triclinic

Space group

P-1

P1

a , Å

11.0684(3)

10.3355(4)

b , Å

11.1721(3)

11.0049(5)

c, Å

17.0248(5)

11.0848(4)

α , deg

80.7820(10)

69.771(2)

β, deg

86.0600(10)

84.636(2)

γ , deg

61.0370(10)

81.907(2)

V , Å3

1818.06(9)

1169.88(8)

Z

2

1

ρ (calcd.), g/сm3

1.502

1.397

µ , mm–1

1.520

1.198

F (000)

824.0

502.0

Crystal size, mm

0.17×0.09×0.08

0.55×0.38×0.21

2 θ Range of data collection, deg

7.38 - 58.28°

3.98 - 47.5°

Range of refraction indices

- 15 ≤ h ≤ 15, - 15 ≤ k ≤ 15, - 23 ≤ l ≤ 23

- 11 ≤ h ≤ 11, - 12 ≤ k ≤ 12, - 12 ≤ l ≤ 12

Measured reflections

32558

14775

Independent reflections

9014

6981

R int

0.0480

0.0245

Refinement variables

421

521

GOOF

1.030

1.159

R factors for F2 > 2 σ (F2)

R 1 = 0.0314, wR 2 = 0.0551

R 1 = 0.0511, wR 2 = 0.1274

R factors for all reflections

R 1 = 0.0564, wR 2 = 0.0611

R 1 = 0.0589, wR 2 = 0.1361

Residual electron density (min/max), e 3

0.49/ - 0.33

1.04/ - 2.17

Table 2

Selected bond lengthes and bond angles in the structures of compounds 1 - 2

Bond

d , Å

Angle      \

ω , deg

Bond

d , Å

Angle

ω , deg

1

2

Sb(1) - Sb(1a)

3.1409(4)

O(1a)Sb(1)C(1)

165.14(10)

Sb(1) - O(1)

1.997(17)

O(1)Sb(1)C(11)

93.7(9)

Sb(1) - O(1)

1.9372(18)

O(1)Sb(1)C(11)

114.54(10)

Sb(1) - C(11)

2.145(14)

O(1)Sb(1)O(2)

167.6(6)

Sb(1) - O(1a)

2.0784(18)

O(1a)Sb(1)C(11)

89.40(9)

Sb(1) - O(2)

2.143(18)

O(1)Sb(1)C(21)

86.7(7)

Sb(1) - C(1)

2180(3)

O(1)Sb(1)C(21)

130.04(10)

Sb(1) - C(21)

2.166(17)

O(1)Sb(1)C(1)

95.3(8)

Sb(1) - C(11)

2.135(3)

C(11)Sb(1) C(1)

103.30(11)

Sb(1) - C(1)

2.18(2)

С(11)Sb(1)C(21)

116.3(10)

Table 2 (end)

Bond

d , Å

Angle

го , deg

Bond

d , Å

Angle

го , deg

1

2

Sb(1) - C(21)

2.150(3)

C(11)Sb(1)C(21)

111.93(11)

Sb(2) - O(1)

1.951(18)

С(11)Sb(1)C(1)

124.4(12)

Sb(2) - Sb(2b)

3.1441(3)

C(21)Sb(1)Sb(1a)

110.58(8)

Sb(2) - C(41)

2.150(17)

O(2)Sb(1)C(11)

87.2(9)

Sb(2) - O(2)

2.0585(17)

C(21)Sb(1)C(1)

96.05(11)

Sb(2) - C(61)

2.114(12)

O(2)Sb(1)C(21)

81.9(7)

Sb(2) - O(2b)

1.9473(17)

O(2b)Sb(2)C(31)

89.87(9)

Sb(2) - C(51)

2.114(12)

O(2)Sb(1)C(1)

94.3(8)

Sb(2) - C(31)

2.186(3)

O(2)Sb(2)C(31)

163.65(9)

Sb(2) - O(4)

2.129(17)

С(1)Sb(1)C(21)

118.9(10)

Sb(2) - C(41)

2.131(3)

O(2b)Sb(2)C(41)

108.70(10)

О(2) - О(3)

1.337(17)

Sb(2)O(1)Sb(1)

169.2(6)

Sb(2) - C(51)

2.151(3)

O(2)Sb(2)C(41)

92.51(10)

O(4) - O(5)

1.356(17)

C(22)C(21)Sb(1)

127.0(19)

O(1) - Sb(1a)

2.0784(18)

O(2b)Sb(2)C(51)

130.20(9)

O(5) - C(35)

1.51(2)

C(46)C(41)Sb(2)

114.2(15)

O(2) - Sb(2b)

1.9473(17)

O(2)Sb(2)C(51)

87.24(9)

O(3) - C(31)

1.451(17)

C(42)C(41)Sb(2)

124.6(15)

Symmetry relation: a) 1 - x, - y, 2 - z; b) 2 - x, 1 - y, 1 - z

The full tables of atomic coordinates, bond lengths, and bond angles for the substance 1 was deposited with the Cambridge Crystallographic Data Centre (№ 1052677; ; .

Results and Discussion

It has been found that the oxidation of tri( o -tolyl)antimony by tert -butylhydroperoxide at the molar ratio 1:1 in diethyl ether goes with the formation of tri( o -tolyl)antimony oxide with dimeric structure: bis 2 -oxo-tri( o -tolyl)antimony] ( 1 ):

2 ( o -Tol^Sb + 2 t -BuOOH ^ [( o -Tol^SbOh + 2 t -BuOH

According to X-ray diffraction data the crystal of compound 1 contains two types of crystallographically independent molecules ( А , B ). The antimony atoms have intermediate coordination between tri-gonal-bipyramidal and square-pyramidal coordination (Fig. 1).

Fig. 1. The structure of compound 1А (hydrogen atoms aren’t shown)

Two carbon atoms of the aryl substituents and μ2-bridging oxygen atom are placed in equatorial plane, the second μ2-bridging oxygen atom and carbon atom are in axial positions. The sum of equatorial OSbC and CSbC angles is 356.57(10)º for А and 350.83(10)º for B. The axial OSbC angles are significantly distorted, they are equal to 165.14(10)° and 163.65(9)°. The OSbO and SbOSb angles in the flat cyclic fragment [Sb2O2] equal 77.14(8)°, 102.86(8)° (А) and 76.62(8)°, 103.13(7)° (B). The Sb-Ceq bond lengths (2.135(3), 2.150(3) А А; 2.131(3), 2151(3) A B) and Sb-Oeq (1.937(2) А А; 1.943(2) A B) are less than Sb-Cax (2.180(3) А А; 2.186(3) A B) and Sb-Oax (2.078(2) А А; 2.058(2) A B). The distances between antimony atoms in the cycle (3.1409(5) (А), 3.1441(3) Å (B)) are considerably less than the double Van der Waals radius of antimony atom (4.4 Å [18]). The о-Tol3Sb fragments in compound 1 are in staggered conformation with respect to each other. Geometrical parameters of complex 1 are close to geometrical parameters of such compounds as (Ph3SbO)2 [19] and [(2-MeOC6H4)3SbO]2 [20].

When the concentration of tert -butylhydroperoxide has increased (1:2 or 1:4) the single organoan-timony product in the reaction mixture is μ 2 -oxo- bis [( tert -butylperoxo)tri( o -tolyl)antimony] ( 2 ), the product yield is 92 %:

2 ( o -Tol^Sb + 4 t -BuOOH ^ [( o -Tol^SbOOBu- t ]2O + 2 t -BuOH + H2O

The coordination polyhedron of antimony atoms in binuclear molecule 2 is an insignificantly distorted trigonal bipyramid (Fig. 2). The bipyramid distortion is characterized by deflection of Sb(1) and Sb(2) atoms from their respective equatorial planes by 0.02 Å and 0.08 Å to the direction of the bridging oxygen atom O(1), which leads to angle deviation between axial and equatorial bonds from the theoretical value 90 ° . The axial OSb(1,2)O angles are equal to 167.6(6) ° and 159.5(5) ° .

The equatorial CSb(1,2)C angles are changed in the range of 116.3(8) °- 124.4(12) ° . The Sb(1)O(1)Sb(2) angle is 169.2(6) ° . The SbOSb fragment has linear structure in the centrosymmetric molecule of μ 2 -oxo- bis [( tert -butylperoxo)triphenylantimony] [21].

Fig. 2. The structure of compound 2 (hydrogen atoms aren’t shown)

The equatorial bonds Sb(1)-Ceq and Sb(2)-Ceq are changed in the range of 2.14(1) - 2.18(2) A and 2.10(1) - 2.15(1) A.

The Sb(1,2)–О(1) distances are equal to 1.997(7) and 1.951(18) Å, and they are less than terminal distances Sb(1)–О(2) (2.143(18) Å) and Sb(2)–О(4) (2.129(17) Å) like in the molecule of μ 2 - oxo- bis [( tert -butylperoxo)triphenylantimony].

Conclusions

Thus, tert -butylhydroperoxide oxidizes tri( o -tolyl)antimony at the molar ratio of the reactants 1:1 into tri( o -tolyl)antimony oxide, which dimerizes into bis 2 -oxo-tri( o -tolyl)antimony]. With tert butylhydroperoxide in excess (1:2 and 1:4) the reaction proceeds with the formation of the single orga-noantimony compound: q 2-oxo- bis [( tert -butylperoxo)tri( o -tolyl) antimony].

Список литературы Oxidation of tri( o-tolyl)antimony by tert-butyl hydroperoxide. Molecular structures of bis[µ 2-oxo-tri(o-tolyl)antimony] and µ 2-oxo- bis[( tert-butylperoxy)tri( o-tolyl)antimony]

  • Bhattacharya, S.N. Oxidative Addition Reactions of Triarylarsines and Triarylstibines with Copper (II) and Mercury(II) Salts/S.N. Bhattacharya, M. Singh//Indian J. Chem. -1979. -V. 18A, N. 6. -P. 515-516.
  • Metal Derivatives of Organoantimony Compounds; Reactions of Anhydrous Ferric Chloride with Arylantimony Compounds/H.K. Sharma, S. Singh, S.N. Dubey, D.M. Puri//Indian J. Chem. -1982. -V. 21A, N. 6. -P. 619-621.
  • Alberola, A. The Reaction of p-Quinones with Triphenylstibine/A. Alberola, A.M. Gonzaleer, F.G. Pulido//Rev.Roum. Chim. -1984. -V. 29, N. 5. -P. 441-446.
  • Oxidative Addition Reaction of o-Quinones to Triphenylantimony. Novel Triphenylantimony Catecholate Complexes/V.K. Cherkasov, E.V. Grunova, A.I. Poddel’sky et al.//J. Organomet. Chem. -2005. -V. 690. -N. 5. -P. 1273-1281.
  • Goel, R.G. Organoantimony Сompounds/R.G. Goel, D.R. Ridlej//J. Organomet. Chem. -1979. -V. 182. -N. 2. -P. 207-212.
  • Bajpai, K. Synthesis and Reactions of o-Triorganoantimony Dioximates/K. Bajpai, R.S. Srivastava//Synth. Inorg. Met.-Org. Chem. -1981. -V. 11, N. 1. -P. 7-13.
  • Chang, M.-M.Y. Some New Organoantimony (V) Compounds/M.-M.Y. Chang, S. Kai, J.I. Musher//Isr. J. Chem. -1974. -V. 12, N. 5. -P. 967-970.
  • Domagala, M. Triorganoantimon-und Triorganobismutderivate von Carbonsauren funfgliedriger Heterocyclen Kristall-und Molekulstruktur von (C6H5)3Sb(O2C-2-C4H3S)2 und (CH3)3Sb(O2C-2-C4H3S)2/M. Domagala, F. Huber, H. Preut//Z. Anorg. Allg. Chem. -1989. -Bd. 574. -S. 130-142.
  • Domagala, M. Triorganoantimon-und Triorganobismutderivate von 2-Pyridincarbonsaure und 2-Pyridinlessigsaure. Kristall-und Molekulstrukturen von Ph3Sb(O2C-2-C5H4N)2 und Me3Sb(O2CCH2-2-C5H4N)2/M. Domagala, F. Huber, H. Preut//Z. Anorg. Allg. Chem. -1990. -Bd. 582. -S. 37-50.
  • Ruther, R. Triorganoantimon-und Triorganobismutdisulfonate Kristall-und Molekulstrukturen von (C6H5)3M(O3SC6H5)2 (M=Sb, Bi)/R. Ruther, F. Huber, H. Preut//Z. Anorg. Allg. Chem. -1986. -Bd. 539. -S. 110-126.
  • Westhoff, T. Syntesis of Tris(2,4,6-trimetylphenyl)hydroxoantimony Carboxylates. Crystall Structure of Tris(2,4,6-trimetylphenyl)hydroxoantimony 1-Adamantylcarboxylate/T. Westhoff, F. Huber, H. Preut//J. Organomet. Chem. -1988. -V. 348, N. 2. -P. 185-191.
  • Hiatt, R. The Reaction of Hydroperoxides with Triphenylarsine and Triphenylstibine/R. Hiatt, C. McColeman, G.R. Howe//Canad. J. Chem. -1975. -V. 53, N. 4. -P. 559-563.
  • Термохимия реакции трифенилфосфора, -мышьяка и -сурьмы с гидроперекисью третичного бутила/В.Г. Цветков, Ю.А. Александров, В.Н. Глушакова и др.//Журн. общ. химии. -1980. -T. 50. -№ 2. -С. 256-258.
  • Reactions of Organometallic Compounds with Organic peroxides/G.A. Razuvaev, V.A. Shushunov, V.A. Dodonov, T.G. Brilkina//Organic Peroxides. -N.Y.: J. Willey and Sons. -1972. -V. 3. -P. 141-270.
  • Пероксидные соединения трифенилсурьмы, их синтез и строение/И.Е. Покровская, В.А. Додонов, З.А. Старикова и др.//Журн. общ. химии. -1981. -T. 51, № 6. -С. 1247-1253.
  • Bruker (2000) SMART. Bruker Molecular Analysis Research Tool, Versions 5.625 Bruker AXS, Madison, Wisconsin, USA.
  • Bruker (2000) SAINTPlus Data Reduction and Correction Program Versions 6.02a, Bruker AXS, Madison, Wisconsin, USA.
  • Бaцaнов, С.С. Атомные радиусы элементов/С.С. Бацанов//Журн. неорган. химии. -1991. -T. 36, № 12. -С. 3015-3037.
  • Bordner, J. Crystal Structure of 2,2,2,4,4,4-Tetrahydro-2,2,2,4,4,4-hexaphenyl-1,3,2,4-dioxadistibetane (Triphenylstibine Oxide Dimer) and Related Compaunds/J. Bordner, G.O. Doak, T.S. Everett//J. Am. Chem. Soc. -1986. -V. 108, N. 14. -P. 4206-4213.
  • Diverse Structures and Remarkable Oxidizing Ability of Triarylbismuthane Oxides. Comparative Study on the Structure and Reactivity of a Series of Triarylpnictogen Oxides/Y. Matano, H. Nomura, T. Hisanaga et al.//Organometallics. -2004. -V. 23, N. 23. -P. 5471-5480.
  • Кристаллическая и молекулярная структура окса-бис(трет.бутилперокситрифенилсурьмы)/З.А. Старикова, Т.М. Щеголева, В.К. Трунов и др.//Кристаллография. -1978. -Т. 23, № 5. -С. 969-973.
Еще
Статья научная