Oxidative stress markers and antioxidant potential of wheat treated with phytohormones under salinity stress

Автор: Barakat Nasser A.M.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.7, 2011 года.

Бесплатный доступ

The interactive effects 0.5 mM indole acetic acid or 0.1 mM of salicylic acid as shoot spraying on NaCl wheat stressed plant organs (spike, shoot and root) grown in pot experiment under different salinity levels (0, 50, 100, 150 and 200 mM NaCl) were studied. The antioxidant enzymes as catalase, peroxidase and ascorbate peroxidase, photosynthetic pigments, reducing sugar, proteins, amino acids, and proline contents in spike, shoot and root of salinity stressed plants were the most affected parameters specially at high salinity levels (150-200 mM NaCl).Treatments with 0.5 mM indole acetic acid or 0.1 mM of salicylic acid as shoot spraying on NaCl wheat stressed plant organs mitigated the harmful effect of NaCl. To conclude the phytohormone acetic acid or salicylic acid salt tolerance in stressed wheat by significantly catalase, peroxidase, and ascorbate peroxidase, increased photosynthetic pigments and the accumulation of nontoxic metabolites (sugars, proteins, amino acid and free proline) as a protective adaptation mechanismin different wheat organs. However, the magnitude of increase was more pronounced in salicylic acid treated plants than in indole acetic acid treated ones, and the spike was more accumulator organ of non toxic metabolites compared to shoot and root. salicylic acid and/or indole acetic acid treatments prevents the deleterious effects of salinity stressed wheat and could be adopted as a potential growth regulator or antioxidant to improve growth particularly under moderate NaCl salinity levels, wheat plant respond positively to SA foliar application than IAA application.

Еще

Antioxidant enzymes, photosynthetic pigments, metabolic processes, indole acetic acid, salicylic acid, salinity, triticum

Короткий адрес: https://sciup.org/14323556

IDR: 14323556

Список литературы Oxidative stress markers and antioxidant potential of wheat treated with phytohormones under salinity stress

  • Abdel-Wahed, M.S.A., Amin, A.A.and El-Rashad, S.M. (2006) effect of some bioregulators on vegetative growth, yield and chemical constituents of yellow maize plants. World J. Agric. Sci.2(2): 149-155.
  • Ackerson, R. C. (1985) Osmoregulation of cotton in response to water stress III. Effects of phosphorus fertility. Journal of Plant Physiology. 77: 309-312.
  • Aebi, A. (1984) Catalase in vitro.Meth. Enzymol105: 121-126.
  • Afzal, I., Basara, S.M.A., Faooq, M. and Nawaz, A. (2006) Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. Int J Agric Biol. 8: -28.
  • Antoline, M.C. and Sauchez-Dais, M. (1992) Photosynthetic nutrient use deficiency, nodule activity and solute accumulation in drought stressed alfalfa plants. Photosynthetica 27: 595-604.
  • Asada, K. and Chen, G.(1992) Interaction of ascorbate peroxidase by thoils requires hydrogen peroxide. Plant Cell Physiol. 33: 117-123.
  • Ashraf, M.and Harris, P. J. C. (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci.166:-6.
  • Azooz, M.M. (2009) Salt stress initigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerant. Int J Agric Biol11: 343-350.
  • Bates, L. S., Waldren R. P. and Tear, L. D.(1973) Rapid determination of free proline for water-stress studies. Plant and Soil. 39: 205-207.
  • Charparzadeh, N., Lucia, M., Negad, R., Izzo, R. and Izzo, F. (2004) Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiol. Biochem., 42: 695-701.
  • Egamberdieva, D. (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861-864
  • El-Mergawi, R. and Abdel-Wahed, M. (2007) Diversity in salicylic acid effects on growth criteria and different acetic acid forms among bean and maize Plant Growth Substances Association.19th Annual meeting, Puerto Vallarta, Mexico, July 21-25: 2007.
  • Fales, D. R. (1951) The assimilation and degradation of carbohydrates of yeast cells. J. Biol. Chem. 193: 113-118.
  • Farooq, S.and Azam, F.(2006) The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. J. Plant Physiol., 163 -637.
  • Feierabend, J. and Dehne, S. (1996) Fate of the porphyrin cofactors during the light-dependent turnover of catalase and of the photosysem II reaction center protein DI in mature rye leaves. Planta 198:413-422.
  • Foyer, C. H., Alschei, R. C.and Hess, J.L.(1993) Ascorbic acid; an Antioxidants in Higher Plants. pp. 31-58. CRC Press, Boca Raton
  • Ghassemi, F., Jakeman, A. J. and Nix, H. A. (1995) Salinisation of land and water resources.Wallingford, UK: CAB International.
  • Ghorbanli, M., Ebrahimzadeh, H. and Sharifi, M. (2004) Effects of NaCl and mycorrizal fungi on antioxidative enzymes in soybean. Biol. Plant. 48: 575-581.
  • Gunes, A., Inal, A., Alpaslam, M., Erslan, F., Bagsi, E. G. and Cicek, N. (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maiz (Zea mays L.) grown under salinity. J. Plant physiol 164: 728-736.
  • Hajiboland, R. and Hasani, B. (2007) Responses of antioxidant defense capacity and photosynthesis of bean (Phaseolus vulgaris L.) plant to copper and manganese toxicity under different light intensities. Acta Biol Szeged 51:93-106.
  • Hamdia, M. A. (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilenseinoculation on maize cultivars grown under salt stress conditions. Plant Growth regulation. 44: 165-174.
  • Hassanein, R. A., Bassuony, F. M., Baraka, D. M. and Khalil, R. R. (2009) Effects of Nicotinamide and Ascrobic Acid on Zea mays. Grown Under Salinity Stress. I-Changes in Growth, Some Relevant Metabolic Activities and Oxidative Defense Systems. Research Journal of Agriculture and Biological Sciences5(1): 72-81
  • Havir, E. A.and Mellare, N. A. (1987) Biochemical and developmental characterization of multiple forms of catalase in Tobacco leaves. Plant Physiology.84: 450-455.
  • Hayat, Q., Hayat, S., Irfan, M. and Ahmad, A. (2010) Effect of exogenous salicylic acid under changing environment: A review. Environ Exp Bot 68: 14-25.
  • Hussein, M. M., Balbaa, L. K. and Gaballah, M. S.(2007) Salicylic acid and salinity effect on growth of maiz plants. J Agr Biol Sci. 3: 321-328.
  • Iqpal, M., Ashraf, M., Jamil, U.and Shafeq, A. (2006) Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plant under salt stress. J. of Integrative Plant Biology48(2): 181-189.
  • Jahnke, L. S. and White, A. L.(2003) Long-term hyposaline and hypersaline stresses produce distinct antioxidant responses in the marine algae Dunaliella tertiolecta. J. Plant Physiol.160: 1193-1202.
  • Javid, G. M., Sorooshzadeh, A., Moradi, F., Mohammad, S. A., Sanavy, M. Allahdadi, I. (2011) The role of phytohormones in alleviating salt stress in crop plants Australian J Crop Science 5(6):726-734.
  • Jebara, S., Jebara, M., Liman, F. and Aquani, M. E. (2005) Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxidase dismutase activities in common bean (Phaseolus vulgaris L.) nodules under salt stress. J.plant. physiol.162:929-936.
  • Kaya, C., Kirnak, H., Higgs, D. and Saltali, K. (2002) Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high salinity. Sci Hortic 93:65-74.
  • Khan, M. (2006) Effect of sea salt and L-ascorbic acid on the seed germination of halophytes. J. Arid Environ. 67: 535-40
  • Klapheck, S., Zimmer, I. and Cosse, H.(1990) Scavenging of hydrogen peroxide in endosperm of Ricinus communisby ascorbate peroxidase. Plant Cell Physiology. 31: 1005-1013.
  • Kodandaramaiah, J. (1983) Physiological studies on the influence of B -vitamins on leaf and fruit metabolism in cluster beans Cyamopsis tetragonoloba (L.) Tanb.Ph.D. Thesis submitted to Srivenkateswera Univ. Tirupati, India
  • Kuznetsov, V. V. and Shevyakova, N. I. (1999) Proline under stress conditions: Biological role, metabolism, and regulation. Russ. J. Plant Physiol 46: 321-336.
  • Lee, D. H., Kim, Y. S. and L, C. B.(2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa.). J. Plant Phyiol. 158: 737-745.
  • Levent Tuna, A., Cengiz, K., Mura, D., Ibrahim, Y., Betul, B. and Hakan, A.(2007) Comparative effects of various salicylic acid derivatives on key growth parameters and some enzyme activities in salinity stressed maize (zea maysL.) Plants. Pak. J. Bot. 39(3): 787-798.
  • Lowery, O. H., Rosebrough, N. J., Fail A. l. and Randall, R. J. (1951) Protein measurements with foline phenol reagent. J. Bio. Chem.193: 265-275.
  • Maehly, A. C. and Chance, B. (1954) The assay of catalases and peroxidases. Methods Biochem Anal 1: 357-424.
  • Mansour, M. M. F. (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol. Plant. 43: 491-500.
  • Mansour, M. M. F. (2004). Cellular basis of salinity tolerance in plants. Environ. Exp. Bot.,52: 113-22.
  • Metzner, H., Rau, H. and Senger, H.(1965) Untersuchungen zur Synchronisierbarkeit einzenlner Pigment-Mungel Mutanten von Chlorella. Planta. 65: 186-194.
  • Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405-410.
  • Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G. and Therios, I. (2006) Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 Malus domestica Borkh),. Environ. Exp. Bot.,56: 54-62.
  • Moore, O. S. and Stein, W. (1948) Photoetric ninhydrine method for use in the chromatography of amino acids. J. Biol. Chem.,17: 367-388.
  • Mukherjee, S. P. and Choudhuri, M. A. (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna. Plant Physiol.58: 166-170.
  • Noreen, Z. and Ashraf, M. (2009) Assessment of variation in antioxidative defense system in salt treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J.Plant Physiol., 166: 1764-1774.
  • Patricia, A., Thomas, J. C., V, D. M., B,t H. J. J, R. G.() Distinct cellular and organismic responses to salt stress. Plant Cell Physiol., 33 -1223.
  • Polle, A. (1997) Defense against photooxidative damage in plants. In: Scendalios J. (ed): Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Cold Spring Harbor laboratory Press, NY, PP. 785-813.
  • Popova, L. P., Stoinova, Z. G. and Maslenkova, L. T. (1995) Involvement of abscisic acid in photosynthetic process in Hordeum vulgare. during salinity stress. J. Plant Growth Regul. 14: 211-218.
  • Quartacci, M. E. and Navari-Izzo, F. (1992) Water stress and free radical mediaed changes in sunflower seedlings. J. Plant. Physiol., 139: 621-625.
  • Rahnama, H. and Ebrahimzadeh, H. (2005) The effect of NaCl on antioxidant enzyme activities in potato seedlings. Biol. Plant., 49 -97.
  • Rai, S. P., Luthra, R. and Kumar, S.(2003) Salt-tolerant mutants in glycophytic salinity response (GRS) genes in Catharanthus roseus. Theor. Appl. Genet.106 -230.
  • Rao, G. G. and Rao, G. R. (1981) Pigment composition and chlorophylase activity in pigeon pea (Cajanus indicus Sperng) and gingelley (Sesamum indicum) under NaCl salinity,. Indian, J. Exp. Biol.,19: 768-770.
  • Sakhabutdinova, A. R., Fatkhutdinova, D. R., Bezrukova, M. V. and Shakirova, F. M. (2003) Salicylic acid prevents the damaging action of stress factors on winter wheat leaves. -Phytochemistry 67: 710-715.
  • Shakirova, F. M., Sakhabudinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A. and Fatkhutinova, D. R.(2003) Changes in the hormonal status of wheat seedlings induced by salicylic and salinity. Plant Science. 164: 317-322.
  • Shalata, A. and Peter, M. N. (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J. Exp. Bot.52: 2207-2211.
  • Sheteawi, A. S. (2007) Improving Growth and Yield of Salt-stressed Soybean by Exogenous Application of Jasmonic Acid and Ascobin. journal of agriculture and biology 9(3): 473-478.
  • Silveira, J. A., Viegas Rde, A., Darocha, I. M., moreira, A. C., Moreira Rd,e A. and oliveira, J. T.(2003). Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. J. Plant Physiol.160 -123.
  • Singh, A. K.and Dubey, R. S. (1995) Changes in chlorophyll a and b contents and activities of photosystems 1 and 2 in rice seedling induced by NaCl. Photosnthetica, 31: 489-499.
  • Srivastava, D. K., Gupta, V. K. and S, D.R.(1995) In vitro and characterization of water stress tolerance callus cultures of tomato (Lycopersicum esculentum). Indian J. Plant Physiol2: -104.
  • Sudhakar, C., Lakshmi, A. and G, S. (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba.) under NaCl salinity. Plant Sci. 161: 613-619.
  • Szabolcs, I. (1994) Soils and salinization. In: Pessarakli, M. (ed.), Hand-book of Plant and Crop Stress. pp. 3-11. Marcel Dekker, New York
  • Tari, I., Csisaa, J., Szalai, G., Horath, F., Kiss, G., Szepesi, G., Szabl, M. and Erdei, L. (2002). Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatmen. Acta Biol Szegediensis 46: 55-56
  • Tsugane, K., Koboyashi, K., Niwa, Y., Ohba, Y., Wada, K. and Koboyashi, H. (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell, 11: 1195-206
  • Vangronsveld, J. and Clijsters, H. (1994) Toxic effects of metals. In: Plants and the Chemical Elements. Biochemistry, Uptake, Tolerance and Toxicity (FARAGO M. E., Ed.), pp. 150.177, VCH Verlagsgesellschaft, Weinheim.
  • Yordanov, I., Velikova, V. and Tsonev, T. (2003) Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol., Special Issue, 187-206.
Еще
Статья научная