Parametric analysis of the strength of a solid propellant rocket engine nozzle

Автор: Dogadkin V.A., Kolga V.V., Trukhin V.R.

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Aviation and spacecraft engineering

Статья в выпуске: 3 vol.24, 2023 года.

Бесплатный доступ

The paper presents an approach to solving the problem of designing a solid propellant rocket engine (SPRE) nozzle using such a design feature as a carbon fiber insert plate. The design task is to select the optimal parameters of the plate shape and thickness, providing the required load-bearing capacity with minimal mass. During the design process, a parametric analysis of a SPRE nozzle with a carbon fiber insert plate was carried out. By varying the thickness of the plate, an optimal design scheme that corresponds to the specified safety and stability factors was selected. Parametric analysis of an insert plate made of a composite material includes modeling of its main weight and strength parameters: analysis of the stress-strain state of the structure, values of natural frequencies, determination of the buckling margin, and determination of a SPRE nozzle mass. The analysis of the load-bearing capacity of a SPRE nozzle with an insert plate made of a composite material was carried out by the finite element method using the SolidWorks Simulation software package. When conducting a parametric analysis, two variants of a SPRE nozzle with and without an insert plate were considered. According to the results of a parametric analysis of a SPRE nozzle, its geometric dimensions were determined and the structure mass was minimized.

Еще

Parametric analysis, SPRE nozzle strength, composite material, stress-strain state, buckling, SPRE nozzle design

Короткий адрес: https://sciup.org/148329695

IDR: 148329695   |   DOI: 10.31772/2712-8970-2023-24-3-510-520

Список литературы Parametric analysis of the strength of a solid propellant rocket engine nozzle

  • Belonovskaya I. D. Kolga V. V., Yarkov I. S., Yarkova E. A. [Parametric analysis of the anisogrid body of a spacecraft for cleaning the orbit from space debris]. Siberian Aerospace Journal. 2021, Vol. 22, No. 1, P. 94–105. DOI: 10.31772/2712-8970-2021-22-1-94-105 (In Russ.).
  • Dogadkin V. A., Trukhin V. R. [Investigation of the bearing capacity of “composite-metal” units in rocketry]. Sbornik statey II Mezhdunarodnoy nauchno-prakticheskoy konferentsii “Nauchnotekhnicheskoye razvitiye Rossii i mira” [Collection of articles of the II International scientific and practical conference “Scientific and technical development of Russia and the world”]. Moscow, 2023, P. 82–88 (In Russ.).
  • Kazantsev V. G., Zharinov Yu. B., Kapustin M. P. Dinamika i prochnost' raketnykh dvigateley na tverdom toplive [Dynamics and strength of solid-fuel rocket engines]. Biysk, 2014, 380 р.
  • Vasiliev V. V., Barynin V. A., Razin A. F. Anisogrid composite lattice structures – development and aerospace applications. Composite Structures. 2012, Vol. 94, No. 11, P. 17–27.
  • Bordachev V. A., Kolga V. V., Rozhkova E. A. [Study of the static stability of a model rocket] Siberian Aerospace Journal. 2023, Vol. 24, No 1, P. 64–75. Doi: 10.31772/2712-8970-2023-24-1-64-75 (In Russ.).
  • Kolga V. V., Marchuk M. E., Lykum A. I., Filipson G. Y. [Optimization of the location of the attachment points of the instrument panel of the spacecraft based on modal analysis]. Siberian Aerospace Journal. 2021, Vol. 22, No. 2, P. 328–338. DOI: 10.31772/2712-8970-2021-22-2-328-338 (In Russ.).
  • Kolga V. V., Yarkov I. S., Yarkova E. A. Development of the heat panel of the small space apparatus for navigation support. Siberian journal of science and technology. 2020, Vol. 21, No. 3, P. 382–388. DOI: 10.31772/2587-6066-2020-21-3-382-388.
  • Daneev A. V., Rusanov M. V., Sizykh V. N. [Conceptual schemes of dynamics and computer modeling of spatial motion of large structures]. Sovremennyye tekhnologii. Sistemnyy analiz. Modelirovaniye. 2016, No. 4, P. 17–25 (In Russ.).
  • Kolga V. V., Marchuk M. E., Lykum A. I., Filipson G. Y. [Designing the bracing attachment point on the power spoke of the reflector]. Siberian Aerospace Journal. 2022, Vol. 23, No. 3, P. 451–460. DOI: 10.31772/2712-8970-2022-23-3-451-460 (In Russ.).
  • Zamyatin D. A., Kolga V. V. [Construction of anisogrid power structure of the spacecraft adapter] Мaterialy XХII Mezhdunar. nauch. konf. “Reshetnevskie chteniya” [Materials XХII Intern. Scientific. Conf “Reshetnev reading”]. Krasnoyarsk, 2019, P. 26–28 (In Russ.).
  • Velichko A. I., Shendalev D. O. et al. Sposob izgotovleniya krupnogabaritnogo transformiruyemogo reflektora [A method of manufacturing a large-sized transformable reflector]. Patent RF, no. 2674386, 2018.
  • Zamyatin D. A., Kolga V. V. [Modeling the design of the reflector mast] Мaterialy XХII Mezhdunar. nauch. konf. “Reshetnevskie chteniya” [Materials XХIV Intern. Scientific. Conf “Reshetnev reading”]. Krasnoyarsk, 2020, P. 21–22 (In Russ.).
  • Lopatin A. V., Morozov E. V., Shatov A. V. Buckling of uniaxially compressed composite anisogrid lattice cylindrical panel with clamped edges. Composite Structures. 2017, Vol. 160, Р. 765–772.
  • Lopatin A. V., Morozov E. V., Shatov A. V. Axial deformability of the composite lattice cylindrical shell under compressive loading: Application to a load-carrying spacecraft tubular body. Composite Structures. 2016, Vol. 146, Р. 201–206.
  • Yevtif'yev M. D., Kovrigin L. A., Kolga V. V., Lebedeva L. N., Filatov V. V. Sovremennyye rakety-nositeli zarubezhnykh stran. Raketno-kosmicheskaya tekhnika [Modern launch vehicles of foreign countries. Rocket and space technology]. Krasnoyarsk, 2010, 276 p. (In Russ.).
  • Izobreten aristid – material, kotoryy v 10 raz legche alyuminiya [Invented aristid – a material that is 10 times lighter than aluminum] (In Russ.). Available at: https://fabricators.ru/article/v-10-raz-legche-alyuminiya-novyy-chudo-material-iz-pereslavlya-zalesskogo-mozhet-izmenit (accessed 01.07.2023).
Еще
Статья научная