Performance Evaluation of Image Segmentation Method based on Doubly Truncated Generalized Laplace Mixture Model and Hierarchical Clustering
Автор: T.Jyothirmayi, K.Srinivasa Rao, P.Srinivasa Rao, Ch.Satyanarayana
Журнал: International Journal of Image, Graphics and Signal Processing(IJIGSP) @ijigsp
Статья в выпуске: 1 vol.9, 2017 года.
Бесплатный доступ
The present paper aims at performance evaluation of Doubly Truncated Generalized Laplace Mixture Model and Hierarchical clustering (DTGLMM-H) for image analysis concerned to various practical applications like security, surveillance, medical diagnostics and other areas. Among the many algorithms designed and developed for image segmentation the dominance of Gaussian Mixture Model (GMM) has been predominant which has the major drawback of suiting to a particular kind of data. Therefore the present work aims at development of DTGLMM-H algorithm which can be suitable for wide variety of applications and data. Performance evaluation of the developed algorithm has been done through various measures like Probabilistic Rand index (PRI), Global Consistency Error (GCE) and Variation of Information (VOI). During the current work case studies for various different images having pixel intensities has been carried out and the obtained results indicate the superiority of the developed algorithm for improved image segmentation.
Image segmentation, Generalized Laplace Mixture Model, doubly truncated generalized Laplace Mixture Model, EM algorithm
Короткий адрес: https://sciup.org/15014157
IDR: 15014157
Список литературы Performance Evaluation of Image Segmentation Method based on Doubly Truncated Generalized Laplace Mixture Model and Hierarchical Clustering
- xture Model based on NonLocal Information for Brain MR Images Segmentation", "International Journal of Signal Processing, Image Processing and Pattern Recognition" Vol.7, No.4, pp.187-194, 2014.
- Karim Kalti, et al., "Image Segmentation by Gaussian Mixture Models and Modified FCM Algorithm", "The International Arab Journal of Information Technology", Vol. 11, No. 1, January 2014.
- Zhaoxia Fu, et al., "Color Image Segmnetation using Gaussian Mixture Model and EM Algorithm", "Multimedia and Signal Processing CCIS 346 Springer", pp 61-66, 2012.
- Srinivas Yerramalle, et al., "Unsupervised image classification using finite truncated Gaussian mixture model", "Journal of Ultra Science for Physical Sciences", Vol.19, No.1, pp 107-114.
- Jyothirmayi T et al.,"Studies on Image Segmentation Integrating Generalized Laplace Mixture Model and Hierarchichal Clustering", "International Journal of Computer Applications", Vol 128, No 12 pp 7-13, 2015.
- M.Vamsi Krishna, et al., "Bivariate Gaussian Mixture Model Based Segmentation for Effective Identification of Sclerosis in Brain MRI Images", "International Journal of Engineering and Technical Research", Vol 3 Issue 1 pp 151-154, 2015.
- Hanze Zhang, et al., "Finite Mixture Models and their Applications: A Review", "Austin Biometrics and Biostatistics", vol 2 issue 1, 2015.
- Mclanchlan G. et al., "The EM algorithm and Extensions", John Wiley and sons, New York-1997.
- Johnson S.C "A Tutorial on Clustering Algorithms", http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html.
- Martin D. , et al., " A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics," in proc. 8th Int. Conf. Computer vision, vol.2, pp.416-423,2001.
- Norman L.Johnson, Kortz and Balakrishnan, "Continuous Univariate distributions"Volume-I, John Wiley and Sons Publications,Newyork, 1994.
- Nikita Sharma, et al., " Colour Image Segmentation Techniques And Issues: An Approach", "International Journal of Scientific & Technology Research", Volume 1, Issue 4, May 2012.
- T.Yamazaki, "Introduction of EM algorithms into color image segmentation", in proceedings of ICIRS'98,pp368-371,1998.
- M. Seshashayee et al.,, "Studies on Image Segmentation method Based on a New Symmetric Mixture Model with K – Means", "Global journal of Computer Science and Technology", Vol.11, No.18, pp.51-58,2011.
- Jahne (1995), "A Practical Hand Book on Image segmentation for Scientific Applications, CRC Press.