Перспективы применения жасмонатов, салицилатов и абсцизовой кислоты в сельском хозяйстве для повышения стрессоустойчивости растений (обзор)

Автор: Пиголев А.В., Дегтярв Е.А., Мирошниченко Д.Н., Савченко Т.В.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 1 т.58, 2023 года.

Бесплатный доступ

В настоящее время по-прежнему актуален поиск новых эффективных способов и подходов, позволяющих контролировать рост, развитие и продуктивность растений, но при этом оказывающих минимальное негативное воздействие на окружающую среду и здоровье человека. Одним из направлений, способствующих экологизации сельскохозяйственного производства, стало внедрение препаратов на основе фитогормонов, которые обладают выраженными протекторными функциями, таких как абсцизовая кислота, салициловая кислота и жасмонаты. Применение указанных фитогормонов может значительно повысить устойчивость растений к неблагоприятным факторам биотической и абиотической природы. В представленном обзоре суммирована актуальная информация о биологических функциях абсцизовой кислоты, жасмонатов и салицилатов, а также собраны примеры, демонстрирующие возможности применения препаратов на основе этих веществ на значимых сельскохозяйственных культурах, и обозначены перспективные направления использования таких препаратов в растениеводстве. Абсцизовая кислота участвует в регуляции роста и развития растения на протяжении всего онтогенеза, а также определяет устойчивость к абиотическим и биотическим стрессовым факторам (J. Li с соавт., 2017), играет важную роль в закрытии устьиц, регулируя потоки ионов в замыкающих клетках, вовлечена в регуляцию всех этапов созревания семян (К. Chen с соавт., 2020). Она может оказывать как положительное, так и отрицательное воздействие на устойчивость растений к патогенам (L. Lievens с соавт., 2017; K. Xie с соавт., 2018) и влиять на симбиотические взаимоотношения растений с грибами и бактериями (А. Цыганова с соавт., 2015). Салициловая кислота обеспечивает устойчивость растений к патогенам (A. Vlot с соавт., 2009; P. Ding с соавт., 2020), играет ключевую роль в развитии реакции сверхчувствительности, локальной гибели клеток вместе с патогеном (D. Klessig с соавт., 1994; M. Alvarez, 2000), а также формировании устойчивости в непораженных частях растения (системная приобретенная устойчивость) (M. Bürger с соавт., 2019). Салициловая кислота также может быть вовлечена в формирование устойчивости к солевому и низкотемпературному стрессам (E. Horvath с соавт., 2015; Ю. Колупаев с соавт., 2021; W. Wang с соавт., 2018) и поддержание микробиома в зоне корней (S. Lebeis с соавт., 2015). Регуляторные эффекты жасмонатов разнообразны, однако в первую очередь их функции связывают с регуляцией механизмов, определяющих устойчивость растений к некротрофным патогенам и насекомым, включая вредителей корней (C. Rohwer с соавт., 2008; S. Johnson с соавт., 2018). Жасмонаты также контролируют устойчивость к низкотемпературному стрессу, солевому стрессу, затоплению, засухе, озону, тяжелым металлам и ультрафиолетовому излучению (Т. Савченко с соавт., 2014; D. Pandita, 2022; T. Savchenko и соавт., 2019; K. Kazan, 2015; H. Kim с соавт., 2021). Высокая биологическая активность абсцизовой кислоты, салицилатов и жасмонатов определяет значительный потенциал их применения в различных областях сельского хозяйства для повышения стрессоустойчивости растений. Вместе с тем опосредованное этими фитогормонами повышение устойчивости зачастую сопровождается подавлением ростовых процессов, что может негативно сказаться на урожайности сельскохозяйственных культур и качестве получаемой продукции. Чтобы оценить перспективы практического использования препаратов на основе абсцизовой кислоты, жасмонатов и салициловой кислоты, необходим углубленный анализ доступных данных о физиологических эффектах, вызываемых этими веществами, поскольку их действие во многом определяется видовой и сортовой специфичностью, фазой развития растений, восприимчивостью ткани-мишени, концентрацией препарата, продолжительностью обработки и условиями применения.

Еще

Фитогормоны, абсцизовая кислота, жасмоновая кислота, салициловая кислота, физиологические эффекты, устойчивость растений, абиотический стресс, биотические стрессовые факторы, экзогенная обработка, адаптивные реакции

Короткий адрес: https://sciup.org/142238093

IDR: 142238093   |   DOI: 10.15389/agrobiology.2023.1.3rus

Список литературы Перспективы применения жасмонатов, салицилатов и абсцизовой кислоты в сельском хозяйстве для повышения стрессоустойчивости растений (обзор)

  • Meng Y., Shuai H., Luo X., Chen F., Zhou W., Yang W., Shu K. Karrikins: regulators involved in phytohormone signaling networks during seed germination and seedling development. Frontiers in Plant Science, 2017, 7: 02021 (doi: 10.3389/fpls.2016.02021).
  • Banerjee A., Roychoudhury A. Chapter 18 — Roles of turgorins and systemins in promoting agriculture. In: Emerging plant growth regulators in agriculture /T. Aftab, M. Naeem (eds.). Academic Press, 2022: 415-422 (doi: 10.1016/B978-0-323-91005-7.00003-5).
  • Handa A.K., Fatima T., Mattoo A.K. Polyamines: bio-molecules with diverse functions in plant and human health and disease. Frontiers in Chemistry, 2018, 6: 10 (doi: 10.3389/fchem.2018.00010).
  • Koprna R., De Diego N., Dundálková L., Spíchal L. Use of cytokinins as agrochemicals. Bioorganic and Medicinal Chemistry, 2016, 24(3): 484-92 (doi: 10.1016/j.bmc.2015.12.022).
  • Skůpa P., Opatrný Z., Petrášek J. Auxin biology: applications and the mechanisms behind. In: Applied plant cell biology: cellular tools and approaches, vol. 22 /P. Nick, Z. Opatrny (eds.). Berlin, Springer, 2014 (doi: 10.1007/978-3-642-41787-0_3).
  • Rademacher W. Chemical regulators of gibberellin status and their application in plant production. In: Annual plant reviews /J.A. Roberts (eds.). Wiley-Blackwell, Hoboken, 2017: 359-403 (doi: 10.1002/9781119312994.apr0541).
  • Ghosh S., Halder S. Effect of different kinds of gibberellin on temperate fruit crops: a review. Pharma Innovation, 2018, 7(3): 315-319.
  • Bagale P., Pandey S., Regmi P., Bhusal S. Role of plant growth regulator “gibberellins” in vegetable production: an overview. International Journal of Horticultural Science and Technology, 2022, 9(3): 291-299 (doi: 10.22059/ijhst.2021.329114.495).
  • Kosakivska I.V., Vedenicheva N.P., Babenko L.M., Voytenko L.V., Romanenko K.O., Vasyuk V.A. Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Molecular Biology Reports, 2022, 49(1): 617-628 (doi: 10.1007/s11033-021-06802-2).
  • Coll Y., Coll F., Amorós A., Pujol M. Brassinosteroids roles and applications: an up-date. Biologia, 2015, 70(6): 726-732 (doi: 10.1515/biolog-2015-0085).
  • Li J., Wu Y., Xie Q., Gong Z. Abscisic acid. In: Hormone metabolism and signaling in plants /S.M. Smith (eds.). Academic, Elsevier, New York, 2017: 161-202.
  • Chen K., Li G.-J., Bressan R.A., Song C.-P., Zhu J.-K., Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 2020, 62(1): 25-54 (doi: 10.1111/jipb.12899).
  • Levi M., Brusa P., Chiatante D., Sparvoli E. Cell cycle reactivation in cultured pea embryo axes. Effect of abscisic acid. In Vitro Cellular & Developmental Biology — Plant, 1993, 29(2): 47-50 (doi: 10.1007/BF02632250).
  • Liu Y., Bergervoet J.H.W., De Vos C.H.R., Hilhorst H.W.M., Kraak H.L., Karssen C.M., Bino R.J.. Nuclear replication activities during imbibition of abscisic acid and gibberellin-deficient tomato (Lycopersicon esculentum Mill.) seeds. Planta, 1994, 194(3): 368-373 (doi: 10.1007/BF00197537).
  • Finkelstein R. Abscisic acid synthesis and response. The Arabidopsis Book, 2013, 11: e0166 (doi: 10.1199/tab.0166).
  • Frey A., Godin B., Bonnet M., Sotta B., Marion-Poll A. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia. Planta, 2004, 218(6): 958-964 (doi: 10.1007/s00425-003-1180-7).
  • Hewage K.A.H., Yang J.-F., Wang D., Hao G.-F., Yang G.-F., Zhu J.-K. Chemical manipulation of abscisic acid signaling: a new approach to abiotic and biotic stress management in agriculture. Advanced Science, 2020, 7(18): 2001265 (doi: 10.1002/advs.202001265).
  • Yoshida T., Obata T., Feil R., Lunn J.E., Fujita Y., Yamaguchi-Shinozaki K., Fernie A.R. The role of abscisic acid signaling in maintaining the metabolic balance required for arabidopsis growth under nonstress conditions. The Plant Cell, 2019, 31(1): 84-105 (doi: 10.1105/tpc.18.00766).
  • Zhao Y., Zhang Z., Gao J., Wang P., Hu T., Wang Z., Hou Y.-J., Wan Y., Liu W., Xie S., Lu T., Xue L.,Liu Y., Macho A.P., Tao W.A., Bressan R.A., Zhu J.-K. Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA-independent SnRK2 activity. Cell Reports, 2018, 23(11): 3340-3351 (doi: 10.1016/j.celrep.2018.05.044).
  • Negin B., Yaaran A., Kelly G., Zait Y., Moshelion M. Mesophyll Abscisic Acid restrains early growth and flowering but does not directly suppress photosynthesis. Plant Physiology, 2019, 180(2): 910-925 (doi: 10.1104/pp.18.01334).
  • Humplík J.F., Bergougnoux V., Van Volkenburgh E. To stimulate or inhibit? That is the question for the function of abscisic acid. Trends in Plant Science, 2017, 22(10): 830-841 (doi: 10.1016/j.tplants.2017.07.009).
  • Lievens L., Pollier J., Goossens A., Beyaert R., Staal J. Abscisic acid as pathogen effector and immune regulator. Frontiers in Plant Science, 2017, 8: 587 (doi: 10.3389/fpls.2017.00587).
  • Xie K., Li L., Zhang H., Wang R., Tan X., He Y., Hong G., Li J., Ming F., Yao X., Yan F., Sun Z., Chen J. Abscisic acid negatively modulates plant defence against rice black-streaked dwarf virus infection by suppressing the jasmonate pathway and regulating reactive oxygen species levels in rice: a negative role of ABA in rice response to RBSDV. Plant, Cell and Environment, 2018, 41(10): 2504-2514 (doi: 10.1111/pce.13372).
  • Цыганова А.В., Цыганов В.Е. Негативная гормональная регуляция развития симбиотических клубеньков. Сообщение II. Салициловая, жасмоновая и абсцизовая кислоты (обзор). Сельскохозяйственная биология, 2015, 50(3): 267-277 (doi: 10.15389/agrobiology.2015.3.267rus).
  • Travaglia C., Reinoso H., Bottini R. Application of abscisic acid promotes yield in field-cultured soybean by enhancing production of carbohydrates and their allocation in seed. Crop and Pasture Science, 2009, 60(12): 1131-1136 (doi: 10.1071/CP08396).
  • Hussain S., Ma B.L., Saleem M.F., Anjum S.A., Saeed A., Iqbal J. Abscisic acid spray on sunflower acts differently under drought and irrigation conditions. Agronomy Journal, 2012, 104(3): 561-568 (doi: 10.2134/agronj2011.0315).
  • Hussain S., Saleem M.F., Iqbal J., Ibrahim M.M., Atta S., Ahmed T., Rehmani M.I.A. Exogenous application of abscisic acid may improve the growth and yield of sunflower hybrids under drought. Pakistan Journal of Agricultural Sciences, 2014, 51(1): 49-58.
  • Esperança C.D.F., Petri J.L., Rossi A.D., Couto M., Sezerino A.A., Gabardo G.C. Induction of senescence and foliar abscission in apple trees with the use of abscisic acid. Journal of Experimental Agriculture International, 2019, 35(5): 1-10 (doi: 10.9734/JEAI/2019/v35i530217).
  • Jarolmasjed S., Sankaran S., Kalcsits L., Khot L.R. Proximal hyperspectral sensing of stomatal conductance to monitor the efficacy of exogenous abscisic acid applications in apple trees. Crop Protection, 2018, 109: 42-50 (doi: 10.1016/j.cropro.2018.02.022).
  • Time A., Ponce C., Kuhn N., Arellano M., Sagredo B., Donoso J.M., Meisel L.A. Canopy spraying of abscisic acid to improve fruit quality of different sweet cherry cultivars. Agronomy, 2021, 11(10): 1947 (doi: 10.3390/agronomy11101947).
  • Melgoza F.J., Kusakabe A., Nelson S.D., Melgar J.C. Exogenous applications of abscisic acid increase freeze tolerance in citrus trees. International Journal of Fruit Science, 2014, 14(4): 376-387 (doi: 10.1080/15538362.2014.899138).
  • Wang X., Yin W., Wu J., Chai L., Yi H. Effects of exogenous abscisic acid on the expression of citrus fruit ripening-related genes and fruit ripening. Scientia Horticulturae, 2016, 201: 175-183 (doi: 10.1016/j.scienta.2015.12.024).
  • Balint G., Reynolds A.G. Impact of exogenous abscisic acid on vine physiology and grape composition of Cabernet Sauvignon. American Journal of Enology and Viticulture, 2013, 64(1): 74-87 (doi: 10.5344/ajev.2012.12075).
  • Gagné S., Esteve K., Deytieux-Belleau C., Saucier C., Geny L. Influence of abscisic acid in triggering "véraison" in grape berry skins of Vitis vinifera L. cv. Cabernet-Sauvignon. OENO One, 2006, 40(1): 7 (doi: 10.20870/oeno-one.2006.40.1.882).
  • Gambetta G.A., Matthews M.A., Shaghasi T.H., McElrone A.J., Castellarin S.D. Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta, 2010, 232(1): 219-234 (doi: 10.1007/s00425-010-1165-2).
  • Koyama K., Sadamatsu K., Goto-Yamamoto N. Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Functional and Integrative Genomics, 2010, 10(3): 367-381 (doi: 10.1007/s10142-009-0145-8).
  • Li J., Liu B., Li X., Li D., Han J., Zhang Y., Ma C., Xu W., Wang L., Jiu S., Zhang C., Wang S. Exogenous abscisic acid mediates berry quality improvement by altered endogenous plant hormones level in "Ruiduhongyu" grapevine. Frontiers in Plant Science, 2021, 12: 739964 (doi: 10.3389/fpls.2021.739964).
  • Kou X., Yang S., Chai L., Wu C., Zhou J., Liu Y., Xue Z. Abscisic acid and fruit ripening: Multifaceted analysis of the effect of abscisic acid on fleshy fruit ripening. Scientia Horticulturae, 2021, 281: 109999 (doi: 10.1016/j.scienta.2021.109999).
  • Li Z., Zhao X., Sandhu A.K., Gu L. Effects of exogenous abscisic acid on yield, antioxidant capacities, and phytochemical contents of greenhouse grown lettuces. Journal of Agricultural and Food Chemistry, 2010, 58(10): 6503-6509 (doi: 10.1021/jf1006962).
  • Barickman T.C., Kopsell D.A., Sams C.E. Abscisic acid impacts tomato carotenoids, soluble sugars, and organic acids. HortScience, 2016, 51(4): 370-376 (doi: 10.21273/HORTSCI.51.4.370).
  • Vlot A.C., Dempsey D.A., Klessig D.F. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 2009, 47: 177-206 (doi: 10.1146/annurev.phyto.050908.135202).
  • Ding P., Ding Y. Stories of salicylic acid: a plant defense hormone. Trends in Plant Science, 2020, 25(6): 549-565 (doi: 10.1016/j.tplants.2020.01.004).
  • Klessig D.F., Malamy J. The salicylic acid signal in plants. Plant Molecular Biology, 1994, 26(5): 1439-1458 (doi: 10.1007/BF00016484).
  • Alvarez M.E. Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Molecular Biology, 2000, 44(3): 429-442 (doi: 10.1023/a:1026561029533).
  • Bürger M., Chory J. Stressed out about hormones: how plants orchestrate immunity. Cell Host & Microbe, 2019, 26(2): 163-172 (doi: 10.1016/j.chom.2019.07.006).
  • Delaney T.P., Uknes S., Vernooij B., Friedrich L., Weymann K., Negrotto D., Gaffney T., Gut-Rella M., Kessmann H., Ward E., Ryals J. A central role of salicylic acid in plant disease resistance. Science, 1994, 266(5188): 1247-1250 (doi: 10.1126/science.266.5188.1247).
  • Vernooij B., Friedrich L., Goy P.A., Staub T., Kessmann H., Ryals J. 2, 6-Dichloroisonicotinic acid-induced resistance to pathogens without the accumulation of salicylic acid. Molecular plant-Microbe Interactions, 1995, 8(2): 228-234 (doi: 10.1094/MPMI-8-0228).
  • Peng Y., Yang J., Li X., Zhang Y. Salicylic acid: biosynthesis and signaling. Annual Review of Plant Biology, 2021, 72: 761-791 (doi: 10.1146/annurev-arplant-081320-092855).
  • Sinha M., Singh R.P., Kushwaha G.S., Iqbal N., Singh A., Kaushik S., Kaur P., Sharma S., Singh T.P. Current overview of allergens of plant pathogenesis related protein families. The Scientific World Journal, 2014, 2014: 543195 (doi: 10.1155/2014/543195).
  • Zhang Y., Cheng Y.T., Qu N., Zhao Q., Bi D., Li X. Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. The Plant Journal, 2006, 48(5): 647-656 (doi: 10.1111/j.1365-313X.2006.02903.x).
  • Chen Z., Silva H., Klessig D.F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 1993, 262(5141): 1883-1886 (doi: 10.1126/science.8266079).
  • Tan S., Abas M., Verstraeten I., Glanc M., Molnár G., Hajný J., Lasák P., Petřík I., Russinova E., Petrášek J., Novák O., Pospíšil J., Friml J. Salicylic acid targets protein phosphatase 2A to attenuate growth in plants. Current Biology, 2020, 30(3): 381-395 e8 (doi: 10.1016/j.cub.2019.11.058).
  • Koo Y.M., Heo A.Y., Choi H.W. Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, 2020, 36(1): 1-10 (doi: 10.5423/PPJ.RW.12.2019.0295).
  • Mandal S., Mallick N., Mitra A. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiology and Biochemistry, 2009, 47(7): 642-649 (doi: 10.1016/j.plaphy.2009.03.001).
  • Li T., Huang Y., Xu Z.-S., Wang F., Xiong A.-S. Salicylic acid-induced differential resistance to the Tomato yellow leaf curl virus among resistant and susceptible tomato cultivars. BMC Plant Biology, 2019, 19(1): 173 (doi: 10.1186/s12870-019-1784-0).
  • Daw B.D., Zhang L.H., Wang Z.Z. Salicylic acid enhances antifungal resistance to Magnaporthe grisea in rice plants. Australasian Plant Pathology, 2008, 37(6): 637-644 (doi: 10.1071/AP08054).
  • Mohan Babu R., Sajeena A., Vijaya Samundeeswari A., Sreedhar A., Vidhyasekaran P., Seetharaman K., Reddy M.S. Induction of systemic resistance to Xanthomonas oryzae pv. oryzae by salicylic acid in Oryza sativa (L.). Journal of Plant Diseases and Protection, 2003, 110(5): 419-431 (doi: 10.1007/BF03356119).
  • Wang Y., Liu J.H. Exogenous treatment with salicylic acid attenuates occurrence of citrus canker in susceptible navel orange (Citrus sinensis Osbeck). Journal of Plant Physiology, 2012, 169(12): 1143-1149 (doi: 10.1016/j.jplph.2012.03.018).
  • Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 2005, 43: 205-227 (doi: 10.1146/annurev.phyto.43.040204.135923).
  • El Oirdi M., El Rahman T.A., Rigano L., El Hadrami A., Rodriguez M.C., Daayf F., Vojnov A., Bouarab K. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. The Plant Cell, 2011, 23(6): 2405-2421 (doi: 10.1105/tpc.111.083394).
  • Khanam N.N., Ueno M., Kihara J., Honda Y., Arase S. Suppression of red light-induced resistance in broad beans to Botrytis cinerea by salicylic acid. Physiological and Molecular Plant Pathology, 2005, 66(1-2): 20-29 (doi: 10.1016/j.pmpp.2005.03.006).
  • Ferrari S., Plotnikova J.M., De Lorenzo G., Ausubel F.M. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. The Plant Journal, 2003, 35(2): 193-205 (doi: 10.1046/j.1365-313x.2003.01794.x).
  • Li L., Zou Y. Induction of disease resistance by salicylic acid and calcium ion against Botrytis cinerea in tomato (Lycopersicon esculentum). Emirates Journal of Food and Agriculture, 2016, 29(1): 78-82 (doi: 10.9755/ejfa.2016-10-1515).
  • Horvath E., Csiszar J., Galle A., Poor P., Szepesi A., Tari I. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. Journal of Plant Physiology, 2015, 183: 54-63 (doi: 10.1016/j.jplph.2015.05.010).
  • Колупаев Ю.Е., Карпець Ю.В. Салициловая кислота и формирование адаптивных реакций растений на абиотические стрессоры: роль компонентов сигнальной сети. Вестник Томского государственного университета. Биология, 2021, 55 (doi: 10.17223/19988591/55/8).
  • Wang W., Wang X., Huang M., Cai J., Zhou Q., Dai T., Cao W., Jiang D. Hydrogen peroxide and abscisic acid mediate salicylic acid-induced freezing tolerance in wheat. Frontiers in Plant Science, 2018, 9: 1137 (doi: 10.3389/fpls.2018.01137).
  • Rivas-San Vicente M., Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 2011, 62(10): 3321-3338 (doi: 10.1093/jxb/err031).
  • Lebeis S.L., Paredes S.H., Lundberg D.S., Breakfield N., Gehring J., McDonald M., Malfatti S., Glavina del Rio T., Jones C.D., Tringe S.G., Dangl J.L. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 2015, 349(6250): 860-864 (doi: 10.1126/science.aaa8764).
  • Rajjou L., Belghazi M., Huguet R., Robin C., Moreau A., Job C., Job D. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 2006, 141(3): 910-923 (doi: 10.1104/pp.106.082057).
  • Zeilmaker T., Ludwig N.R., Elberse J., Seidl M.F., Berke L., Van Doorn A., Schuurink R.C., Snel B., Van den Ackerveken G. DOWNY MILDEW RESISTANT 6 and DMR6-LIKE OXYGENASE 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. The Plant Journal, 2015, 81(2): 210-222 (doi: 10.1111/tpj.12719).
  • Zhang Y., Zhao L., Zhao J., Li Y., Wang J., Guo R., Gan S., Liu C.-J., Zhang K. S5H/DMR6 encodes a salicylic acid 5-Hydroxylase that fine-tunes salicylic acid homeostasis. Plant Physiology, 2017, 175(3): 1082-1093 (doi: 10.1104/pp.17.00695).
  • Raskin I., Turner I.M., Melander W.R. Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proceedings of the National Academy of Sciences, 1989, 86(7): 2214-2218 (doi: 10.1073/pnas.86.7.2214).
  • Rhoads D.M., McIntosh L. Salicylic acid regulation of respiration in higher plants: alternative oxidase expression. The Plant Cell, 1992, 4(9): 1131-1139 (doi: 10.1105/tpc.4.9.1131).
  • Cleland C.F., Tanaka O. Effect of daylength on the ability of salicylic acid to induce flowering in the long-day plant Lemna gibba G3 and the short-day plant Lemna paucicostata 6746. Plant Physiology, 1979, 64(3): 421-424 (doi: 10.1104/pp.64.3.421).
  • Martinez C., Pons E., Prats G., Leon J. Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 2004, 37(2): 209-217 (doi: 10.1046/j.1365-313x.2003.01954.x).
  • Jin J.B., Jin Y.H., Lee J., Miura K., Yoo C.Y., Kim W.-Y., Van Oosten M., Hyun Y., Somers D.E., Lee I., Yun D.-J., Bressan R.A., Hasegawa P.M. The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. The Plant Journal, 2008, 53(3): 530-540 (doi: 10.1111/j.1365-313X.2007.03359.x).
  • Morris K., A.-H.-Mackerness S., Page T., John C.F., Murphy A.M., Carr J.P., Buchanan-Wollaston V. Salicylic acid has a role in regulating gene expression during leaf senescence. The Plant Journal, 2000, 23(5): 677-685 (doi: 10.1046/j.1365-313x.2000.00836.x).
  • Sariñana-Aldaco O., Sánchez-Chávez E., Troyo-Diéguez E., Tapia-Vargas L.M., Díaz-Pérez J.C., Preciado-Rangel P. Foliar aspersion of salicylic acid improves nutraceutical quality and fruit yield in tomato. Agriculture, 2020, 10(10): 482 (doi: 10.3390/agriculture10100482).
  • Senaratna T., Touchell D., Bunn E., Dixon K. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 2000, 30(2): 157-161 (doi: 10.1023/A:1006386800974).
  • Буцанец П.А., Шугаев А.Г. Салициловая кислота повышает устойчивость проростков люпина к гипертермии. Международный научно-исследовательский журнал, 2021, 12(114): 63-66 (doi: 10.23670/IRJ.2021.114.12.043).
  • Souri M.K., Tohidloo G. Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chemical and Biological Technologies in Agriculture, 2019, 6(1): 26 (doi: 10.1186/s40538-019-0169-9).
  • Bayat H., Aminifard M.H. Salicylic acid treatment extends the vase life of five commercial cut flowers. Electronic Journal of Biology, 2017, 13(1): 67-72.
  • Ahmad P., Rasool S., Gul A., Sheikh S.A., Akram N.A., Ashraf M., Kazi A.M., Gucel S. Jasmonates: multifunctional roles in stress tolerance. Frontiers in Plant Science, 2016, 7: 813 (doi: 10.3389/fpls.2016.00813).
  • Huang H., Liu B., Liu L., Song S. Jasmonate action in plant growth and development. Journal of Experimental Botany, 2017, 68(6): 1349-1359 (doi: 10.1093/jxb/erw495).
  • Wasternack C., Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 2013, 111(6): 1021-1058 (doi: 10.1093/aob/mct067).
  • Tran L.-S.P., Pal S. Phytohormones: a window to metabolism, signaling and biotechnological applications. New York, Springer-Verla, 2014.
  • Stintzi A., Browse J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proceedings of the National Academy of Sciences, 2000, 97(19): 10625-10630 (doi: 10.1073/pnas.190264497).
  • Schaller A., Stintzi A. Enzymes in jasmonate biosynthesis — structure, function, regulation. Phytochemistry, 2009, 70(13-14): 1532-1538 (doi: 10.1016/j.phytochem.2009.07.032).
  • Stintzi A., Weber H., Reymond P., Browse J., Farmer E.E. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proceedings of the National Academy of Sciences, 2001, 98(22): 12837-12842 (doi: 10.1073/pnas.211311098).
  • Taki N., Sasaki-Sekimoto Y., Obayashi T., Kikuta A., Kobayashi K., Ainai T., Yagi K., Sakurai N., Suzuki H., Masuda T., Takamiya K., Shibata D., Kobayashi Y., Ohta H. 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiology, 2005, 139(3): 1268-1283 (doi: 10.1104/pp.105.067058).
  • Ribot C., Zimmerli C., Farmer E.E., Reymond P., Poirier Y. Induction of the Arabidopsis PHO1;H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1-dependent pathway. Plant Physiology, 2008, 147(2): 696-706 (doi: 10.1104/pp.108.119321).
  • Arnold M.D., Gruber C., Flokova K., Miersch O., Strnad M., Novak O., Wasternack C., Hause B. The recently identified isoleucine conjugate of cis-12-Oxo-Phytodienoic acid is partially active in cis-12-oxo-phytodienoic acid-specific gene expression of Arabidopsis thaliana. PLoS ONE, 2016, 11(9): e0162829 (doi: 10.1371/journal.pone.0162829).
  • Rohwer C.L., Erwin J.E. Horticultural applications of jasmonates. The Journal of Horticultural Science and Biotechnology, 2008, 83(3): 283-304 (doi: 10.1080/14620316.2008.11512381).
  • Johnson S.N., Glauser G., Hiltpold I., Moore B.D., Ryalls J.M.W. Root herbivore performance suppressed when feeding on a jasmonate-induced pasture grass. Ecological Entomology, 2018, 43(4): 547-550 (doi: 10.1111/een.12527).
  • Trang Nguyen H., Thi Mai To H., Lebrun M., Bellafiore S., Champion A. Jasmonates-the master regulator of rice development, adaptation and defense. Plants, 2019, 8(9): 339 (doi: 10.3390/plants8090339).
  • Vega-Muñoz I., Duran-Flores D., Fernández-Fernández Á.D., Heyman J., Ritter A., Stael S. Breaking bad news: dynamic molecular mechanisms of wound response in plants. Frontiers in Plant Science, 2020, 11: 610445 (doi: 10.3389/fpls.2020.610445).
  • Pieterse C.M., Van der Does D., Zamioudis C., Leon-Reyes A., Van Wees S.C. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 2012, 28: 489-521 (doi: 10.1146/annurev-cellbio-092910-154055).
  • Felton G.W., Donato K.K., Broadway R.M., Duffey S.S. Impact of oxidized plant phenolics on the nutritional quality of dietar protein to a noctuid herbivore, Spodoptera exigua. Journal of Insect Physiology, 1992, 38(4): 277-285 (doi: 10.1016/0022-1910(92)90128-Z).
  • Fidantsef A.L., Stout M.J., Thaler J.S., Duffey S.S., Bostock R.M. Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiological and Molecular Plant Pathology, 1999, 54: 97-114 (doi: 10.1006/pmpp.1998.0192).
  • Farmer E.E., Ryan C.A. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciences, 1990, 87(19): 7713-7716 (doi: 10.1073/pnas.87.19.7713).
  • Chen H., Wilkerson C.G., Kuchar J.A., Phinney B.S., Howe G.A. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proceedings of the National Academy of Sciences, 2005, 102(52): 19237-19242 (doi: 10.1073/pnas.0509026102).
  • Goodspeed D., Chehab E.W., Min-Venditti A., Braam J., Covington M.F. Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proceedings of the National Academy of Sciences, 2012, 109(12): 4674-4677 (doi: 10.1073/pnas.1116368109).
  • Okada K., Abe H., Arimura G. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiology, 2015, 56(1): 16-27 (doi: 10.1093/pcp/pcu158).
  • Meng Z.J., Yan S.C., Liu D,. Yang C.P. Effects of exogenous jasmonates on free amino acid contents in needles of Larix olgensis seedlings. African Journal of Agricultural Research, 2012, 7(19): 2995-3006 (doi: 10.5897/AJAR11.2385).
  • Uddin M.R., Thwe A.A., Kim Y.B., Park W.T., Chae S.C., Park S.U. Effects of jasmonates on sorgoleone accumulation and expression of genes for sorgoleone biosynthesis in sorghum roots. Journal of Chemical Ecology, 2013, 39(6): 712-722 (doi: 10.1007/s10886-013-0299-7).
  • Wasternack C., Hause B. Jasmonates and octadecanoids: signals in plant stress responses and development. Progress in Nucleic Acid Research and Molecular Biology, 2002, 72: 165-221 (doi: 10.1016/S0079-6603(02)72070-9).
  • Howe G.A., Jander G. Plant immunity to insect herbivores. Annual Review of Plant Biology, 2008, 59: 41-66 (doi: 10.1146/annurev.arplant.59.032607.092825).
  • Paré P.W., Tumlinson J.H. Plant volatiles as a defense against insect herbivores. Plant Physiology, 1999, 121(2): 325-332 (doi: 10.1104/pp.121.2.325).
  • De Moraes C.M., Lewis W.J., Paré P.W., Alborn H.T., Tumlinson J.H. Herbivore-infested plants selectively attract parasitoids. Letters to Nature, 1998, 393: 570-573 (doi: 10.1038/31219).
  • Savchenko T., Pearse I.S., Ignatia L., Karban R., Dehesh K. Insect herbivores selectively suppress the HPL branch of the oxylipin pathway in host plants. The Plant Journal, 2013, 73(4): 653-662 (doi: 10.1111/tpj.12064).
  • Engelberth J., Alborn H.T., Schmelz E.A., Tumlinson J.H. Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences, 2004, 101(6): 1781-1785 (doi: 10.1073/pnas.0308037100).
  • Farag M.A., Fokar M., Abd H., Zhang H., Allen R.D., Paré P.W. (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta, 2005, 220(6): 900-909 (doi: 10.1007/s00425-004-1404-5).
  • Савченко Т.В., Застрижная О.М., Климов В.В. Оксилипины и устойчивость растений к абиотическим стрессам. Биохимия, 2014, 79(4): 458-475 (doi: 10.1134/S0006297914040051).
  • Pandita D. Chapter 5 - Jasmonates: key players in plant stress tolerance. In: Emerging plant growth regulators in agriculture /T. Aftab, M. Naeem (eds.). Academic Press, 2022: 165-192 (doi: 10.1016/B978-0-323-91005-7.00020-5).
  • Savchenko T., Rolletschek H., Heinzel N., Tikhonov K., Dehesh K. Waterlogging tolerance rendered by oxylipin-mediated metabolic reprogramming in Arabidopsis. Journal of Experimental Botany, 2019, 70(10): 2919-2932 (doi: 10.1093/jxb/erz110).
  • Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science, 2015, 20(4): 219-229 (doi: 10.1016/j.tplants.2015.02.001).
  • Kim H., Seomun S., Yoon Y., Jang G. Jasmonic acid in plant abiotic stress tolerance and interaction with abscisic acid. Agronomy, 2021, 11(9): 1886 (doi: 10.3390/agronomy11091886).
  • Siddiqi K.S., Husen A. Plant response to jasmonates: current developments and their role in changing environment. Bulletin of the National Research Centre, 2019, 43(1): 153 (doi: 10.1186/s42269-019-0195-6).
  • Hu Y., Jiang L., Wang F., Yu D. Jasmonate regulates the INDUCER OF CBF EXPRESSION-C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 cascade and freezing tolerance in Arabidopsis. Plant Cell, 2013, 25(8): 2907-2924 (doi: 10.1105/tpc.113.112631).
  • Zhu T., Herrfurth C., Xin M., Savchenko T., Feussner I., Goossens A., De Smet I. Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth. Nature Communications, 2021, 12(1): 4804 (doi: 10.1038/s41467-021-24883-2).
  • Riemann M., Dhakarey R., Hazman M., Miro B., Kohli A., Nick P. Exploring jasmonates in the hormonal network of drought and salinity responses. Frontiers in Plant Science, 2015, 6: 1077 (doi: 10.3389/fpls.2015.01077).
  • Wang X., Li Q., Xie J., Huang M., Cai J., Zhou Q., Dai T., Jiang D. Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. The Crop Journal, 2021, 9(1): 120-132 (doi: 10.1016/j.cj.2020.06.002).
  • Savchenko T., Kolla V.A., Wang C.Q., Nasafi Z., Hicks D.R., Phadungchob B., Chehab W.E., Brandizzi F., Froehlich J., Dehesh K. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiology, 2014, 164(3): 1151-1560 (doi: 10.1104/pp.113.234310).
  • Savchenko T., Dehesh K. Drought stress modulates oxylipin signature by eliciting 12-OPDA as a potent regulator of stomatal aperture. Plant Signaling & Behavior, 2014, 9(4): e28304 (doi: 10.4161/psb.28304).
  • Delgado C., Mora-Poblete F., Ahmar S., Chen J.-T., Figueroa C.R. Jasmonates and plant salt stress: molecular players, physiological effects, and improving tolerance by using genome-associated tools. International Journal of Molecular Sciences, 2021, 22(6): 3082 (doi: 10.3390/ijms22063082).
  • Kang D.-J., Seo Y.-J., Lee J.-D., Ishii R., Kim K.U., Shin D.H., Park S., Jang S.W., Lee I.-J. Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. Journal of Agronomy and Crop Science, 2005, 191(4): 273-282 (doi: 10.1111/j.1439-037X.2005.00153.x).
  • Yu H., Wang Y., Xing J., Zhang Y., Duan L., Zhang M., Li Z. Coronatine modulated the generation of reactive oxygen species for regulating the water loss rate in the detaching maize seedlings. Agriculture, 2021, 11(7): 685 (doi: 10.3390/agriculture11070685).
  • Ho T.-T., Murthy H.N., Park S.-Y. Methyl jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures. International Journal of Molecular Sciences, 2020, 21(3): 716 (doi: 10.3390/ijms21030716).
  • Колупаев Ю.Е., Ястреб Т.О. Жасмонатный сигналинг и адаптация растений к действию абиотических стрессоров. Прикладная биохимия и микробиология, 2021, 57(1): 3-23 (doi: 10.31857/S0555109921010281).
  • Chen Q., Sun J.Q., Zhai Q.Z., Zhou W.K., Qi L.L., Xu L., Wang B., Chen R., Jiang H., Qi J., Li X., Palme K., Li C. The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell, 2011, 23(9): 3335-3352 (doi: 10.1105/tpc.111.089870).
  • Goetz S., Hellwege A., Stenzel I., Kutter C., Hauptmann V., Forner S., Mccaig B., Hause G., Miersch O., Wasternack C., Hause B. Role of cis-12-oxo-phytodienoic acid in tomato embryo development. Plant Physiology, 2012, 158(4): 1715-1727 (doi: 10.1104/pp.111.192658).
  • Pigolev A., Miroshnichenko D., Dolgov S., Savchenko T. Regulation of sixth seminal root formation by jasmonate in Triticum aestivum L. Plants, 2021, 10(2): 219 (doi: 10.3390/plants10020219).
  • Hause B., Stenzel I., Miersch O., Maucher H., Kramell R., Ziegler J., Wasternack C. Tissue-specific oxylipin signature of tomato flowers: allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. The Plant Journal, 2000, 24(1): 113-126 (doi: 10.1046/j.1365-313x.2000.00861.x).
  • Feys B., Benedetti C.E., Penfold C.N., Turner J.G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell, 1994, 6(5): 751-759 (doi: 10.1105/tpc.6.5.751).
  • Krajncic B., Kristl J., Janzekovic I. Possible role of jasmonic acid in the regulation of floral induction, evocation and floral differentiation in Lemna minor L. Plant Physiology and Biochemistry, 2006, 44(11-12): 752-758 (doi: 10.1016/j.plaphy.2006.10.029).
  • Creelman R.A., Mullet J.E. Biosynthesis and action of jasmonates in plants. Annual Review of Plant Biology, 1997, 48: 355-381 (doi: 10.1146/annurev.arplant.48.1.355).
  • Xu Q., Truong T.T., Barrero J.M., Jacobsen J.V., Hocart C.H., Gubler F. A role for jasmonates in the release of dormancy by cold stratification in wheat. Journal of Experimental Botany, 2016, 67(11): 3497-3508 (doi: 10.1093/jxb/erw172).
  • Ravnikar M., Rode J., Gogala N., Benedicic D. Regulation of organogenesis with jasmonic acid. Acta Horticulturae, 1990, 280: 169-172 (doi: 10.17660/ActaHortic.1990.280.29).
  • Maciejewska B., Kopcewicz J. Inhibitory effect of methyl jasmonate on flowering and elongation growth in Pharbitis nil. Journal of Plant Growth Regulation, 2002, 21(3): 216-223 (doi: 10.1007/s003440010061).
  • Lalotra S., Hemantaranjan A., Yashu B.R., Srivastava R., Kumar S. Jasmonates: an emerging approach in biotic and abiotic stress tolerance. In: Plant science — structure, anatomy and physiology in plants cultured in vivo and in vitro /A. Gonzalez, M. Rodriguez, N.G. Sağlam (eds.). London, IntechOpen, 2020 (doi: 10.5772/intechopen.84608).
  • Kondo S., Roles of jasmonates in fruit ripening and environmental stress. Acta Horticulturae, 2010, 884: 711-716 (doi: 10.17660/ActaHortic.2010.884.96).
  • Chiu Y.-C., Matak K., Ku K.-M. Methyl jasmonate treated broccoli: Impact on the production of glucosinolates and consumer preferences. Food Chemistry, 2019, 299: 125099 (doi: 10.1016/j.foodchem.2019.125099).
  • Koda Y. Possible involvement of jasmonates in various morphogenic events. Physiologia Plantarum, 1997, 100(3): 639-646 (doi: 10.1111/j.1399-3054.1997.tb03070.x).
  • Koda Y., Kikuta Y. Effects of jasmonates on in vitro tuberization in several potato cultivars that differ greatly in maturity. Plant Production Science, 2001, 4(1): 66-70 (doi: 10.1626/pps.4.66).
  • Kim S.K., Kim J.T., Jang S.W., Lee S.C., Lee B.H., Lee I.J. Exogenous effect of gibberellins and jasmonate on tuber enlargement of Dioscorea opposita. Agronomy Research, 2005, 3: 39-44.
  • Debeljak N., Regvar M., Dixon K.W., Sivasithamparam K. Induction of tuberisation in vitro with jasmonic acid and sucrose in an Australian terrestrial orchid, Pterostylis sanguinea. Plant Growth Regulation, 2004, 36: 253-260 (doi: 10.1023/A:1016570319387).
  • Lulai E.C., Orr P.H., Glynn M.T. Natural suppression of sprouting in stored potatoes using jasmonates. A01N37/42. North Dakota State University (USA). № US5436226A. Appl. 01.11.93. Publ. 25.07.95.
  • Savchenko T.V., Rolletschek H., Dehesh K. Jasmonates-mediated rewiring of central metabolism regulates adaptive responses. Plant and Cell Physiology, 2019, 60(12): 2613-2620 (doi: 10.1093/pcp/pcz181).
  • Boughton A.J., Hoover K., Felton G.W. Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid, Myzus persicae. Entomologia Experimentalis et Applicata, 2006, 120(3): 175-188 (doi: 10.1111/j.1570-7458.2006.00443.x).
  • Asghari M. Impact of jasmonates on safety, productivity and physiology of food crops. Trends in Food Science & Technology, 2019, 91: 169-183 (doi: 10.1016/j.tifs.2019.07.005).
  • Tassoni A., Fornalè S., Franceschetti M., Musiani F., Michael A.J., Perry B., Bagni M. Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytologist, 2005, 166(3): 895-905 (doi: 10.1111/j.1469-8137.2005.01383.x).
  • Nimitkeatkai H., Shishido M., Okawa K., Ohara H., Ban Y., Kita M., Moriguchi T., Ikeura H., Hayata Y., Kondo S. Effect of jasmonates on ethylene biosynthesis and aroma volatile emission in japanese apricot infected by a pathogen (Colletotrichum gloeosporioides). Journal of Agricultural and Food Chemistry, 2011, 59(12): 6423-6429 (doi: 10.1021/jf2010996).
  • Ayala-Zavala J.F., Wang S.Y., Wang C.Y., González-Aguilar G.A. Methyl jasmonate in conjunction with ethanol treatment increases antioxidant capacity, volatile compounds and postharvest life of strawberry fruit. European Food Research and Technology, 2005, 221: 731-738 (doi: 10.1007/s00217-005-0069-z).
  • Wang C.Y. Maintaining postharvest quality of raspberries with natural volatile compounds. International Journal of Food Science & Technology, 2003, 38(8): 869-785 (doi: 10.1046/j.0950-5423.2003.00758.x).
  • Jin P., Zheng Y.H., Cheng C., Gao H.-Y., Chen W.X., Chen H.J. Effect of methyl jasmonate treatment on fruit decay and quality in peaches during storage at ambient temperature. Acta Horticulturae, 2006, 712: 711-716 (doi: 10.17660/ActaHortic.2006.712.90).
  • Meir S., Droby S., Kochanek B., Salim S., Philosoph-Hadas S. Use of methyl jasmonate for suppression of botrytis rot in various cultivars of cut rose flowers. Acta Horticulturae, 2005, 669: 91-98 (doi: 10.17660/ActaHortic.2005.669.10).
  • Valent BioSciences. Режим доступа: https://www.valentbiosciences.com. Дата обращения: 01.06.2022.
  • IUPAC. Prohydrojasmon. Режим доступа: http://sitem.herts.ac.uk/aeru/iupac/Reports/2945.htm. Дата обращения: 01.06.2022.
Еще
Статья обзорная