Physiological response of rice seedlings (Oryzasativa L.) subjected to different periods of two night temperatures

Автор: Alvarado-Sanabria Oscar, Garcs-Varn Gabriel, Restrepo-Daz Hermann

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 1 т.13, 2017 года.

Бесплатный доступ

Night temperatures have shown an increase in rice-growing regions due to climate change in Colombia in recent years, causing a reduction in grain yield. The objective of this research was to study the effect of four different periods of exposure to two night temperatures (24°C vs. 30°C) on the physiological behavior of an Indica rice cultivar widely grown in Colombia. Fedearroz 60 (ʻF60ʼ) were grown under greenhouse conditions for forty-five days. After this period, 12 plants in each treatment was established in a growth chamber at 30°C from 18:00 to 24:00 to carry out the duration of the different periods of heat nighttime stress (4, 8, 12, and 16 days respectively). The control plants were kept in a greenhouse at 24°C. The results showed that leaf photosynthesis, carboxylation efficiency, and pigment content decreased in rice seedlings subjected to 30°C. Also, dark respiration and intercellular CO2 concentration increased. These reductions in the variables as mentioned above were more severe during the first four days of exposure to 30°C than 24°C. In conclusion, these results suggest that these physiological variables may be useful to assess the tolerance of rice plants to high nighttime temperatures in plant breeding programs.

Еще

Chlorophyll fluorescence, leaf photosynthesis, leaf respiration, photosynthetic pigments

Короткий адрес: https://sciup.org/14323948

IDR: 14323948

Список литературы Physiological response of rice seedlings (Oryzasativa L.) subjected to different periods of two night temperatures

  • Ashraf M., Harris P.J.C. (2013) Photosynthesis under stressful environments: An overview. Photosynthetica, 51: 163-190
  • Bates S., Walden R. (1973) Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207
  • Castilla L.A., Pineda D., Ospina J., Echeverry J, Perafan R., Garcés G., Sierra J, Díaz A. (2010) Cambio climático y producción de arroz. Revista Arroz., 58: 4-11
  • Dong W, Chen J., Wang L., Tian Y., Zhang B., Lai Y., Meng Y., Qian C., Guo J. (2014). Impacts of nighttime post-anthesis warming on rice productivity and grain quality in East China. Crop J., 2: 63-69
  • FAO. (2002) Agricultura Mundial hacia los años 2015/2030. Available online at: http://www.fao.org/docrep/004/y3557s/y3557s00.htm (Website accesed December 7,2016)
  • FEDEARROZ. (2015) Producción y área cultivada de arroz paddy en 2013. Available online at: http://www.fedearroz.com.co/new/apr_public.php (Website accessed December 7, 2016)
  • Hodges D.M., DeLong J.M., Forney C.F., and Prange R.K. (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207: 604-611
  • Kiran T.V., Rao Y.V., Subrahmanyam D., Rani N. S., Bhadana V. P., Rao P. R., Voleti S. R. (2013). Variation in leaf photosynthetic characteristics in wild rice species. Photosynthetica, 51: 350-358
  • Krishnan P., Ramakrishnan B., Reddy K.R., Reddy V.R. 2011. High-Temperature Effects on Rice Growth, Yield, and Grain Quality. Adv. Agron., 111: 87-206
  • Kumar, S., D. Gupta, and H. Nayyar. 2011. Comparative response of maize and rice genotypes to heat stress: status of oxidative stress and antioxidants. Acta Physiol. Plant., 34: 75-86
  • Lambers H., Chapin III F.S., Pons T. (2008) Respiration. Plant Physiological Ecology. Springer, New York
  • Lee K.H., Akita S. (2000) Factors causing the variation in the temperature coefficient of dark respiration in rice (Oryza sativa L.). Plant. Prod. Sci., 3: 38-42
  • Lichtenthaler H.K. (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol., 148: 350-382
  • Mohammed A.R., Tarpley L. (2014) Differential response of two important Southern US rice (Oryza sativa L.) cultivars to high night temperature. Aust. J. Crop. Sci., 8: 191-199
  • Mohammed A.R., Tarpley L. (2009a) Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Sci., 49: 313-322
  • Mohammed, A.R., Tarpley L. (2009b) High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agri. For. Meteorol., 149: 999-1008
  • Mohammed A.R., Tarpley L. (2010) Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. Eur. J. Agron.. 33: 117-123
  • Mohammed A.R.,Cothren J.T, Tarpley L. (2013) High night temperature and abscisic acid affect rice productivity through altered photosynthesis, respiration and spikelet fertility. Crop Sci., 53: 2603-2612
  • Plaxton W.C.,Podestá F.E. (2006) The functional organization and control of plant respiration. Crit. Rev. Plant. Sci., 25: 159-198
  • Restrepo-Diaz H., Garces-Varon G. (2013) Response of rice plants to heat stress during initiation of panicle primordia or grain-filling phases. J. Stress Physiol. Biochem., 9: 318-325
  • Sánchez-Reinoso A.D., Garcés-Varón G., Restrepo-Díaz H. (2014) Biochemical and physiological characterization of three rice cultivars under different daytime temperature conditions. Chil. J. Agric. Res., 74: 373-379
  • Sikder S., Foulkes J., West H., De Silva J., Gaju O., Greenland A., Howell P. (2015) Evaluation of photosynthetic potential of wheat genotypes under drought condition. Photosynthetica, 53: 47-54.
  • Song L., Yue L., Zhao H., Hou M. (2013) Protection effect of nitric oxide on photosynthesis in rice under heat stress. Acta. Physiol. Plant., 35: 3323-3333
  • Teixeira E.I., Fischer G., Van Velthuizen H., Walter C., Ewer F. (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agric. For. Meteorol., 170: 206-215
  • Wahid. A., Close T.J. (2007). Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol. Plant., 51: 104-109
  • Wahid A, Gelani S., Ashraf M., Foolad M.R. (2007) Heat tolerance in plants: An overview. Environ. Exp. Bot., 61: 199-223
  • Xue D.W., Jiang H., Hu J., Zhang X.Q., Guo L.B., Zeng D.L., Dong G.J., Sun G.C., Qiana Q.(2012) Characterization of physiological response and identification of associated genes under heat stress in rice seedlings. Plant. Physiol. Biochem., 61: 46-53
  • Yin Y, Li S., Liao W., Lu Q., Wen X., Lu C. (2010) Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves. J. Plant. Physiol., 167: 959-966
Еще
Статья научная