Phytohormones and morphogenesis of root nodules and lateral roots of a legume plant

Автор: Glyanko A.K.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.14, 2018 года.

Бесплатный доступ

Data on the physiological role of phytohormones (mainly cytokinin and auxin) in the initiation of cortical cell division of the root, in the formation of nodule primordium and in its further organogenesis are summarized. The necessity of high level of cytokinin and low level of auxin for this process is proved. The mechanism leading to an increase in the cytokinin / auxin ratio is associated with the inhibition of auxin transport from the aerial organs to the root with the involvement of cytokinin signaling. Reducing cytokinin / auxin ratio against the background of inhibition of cytokinin signaling initiates the formation of lateral roots. The role of other phytohormones as well as flavonoids which have a positive (gibberellins, brassinosteroids) or negative influence (ethylene, abscisic, jasmonic and salicylic acids) on the formation of the root nodule is discussed. The key role of the rhizobial Nod factor signaling in the organogenesis of the nodule is emphasized. The schemes of reactions and signaling processes involved in the initiation of nodule primordium and lateral roots formation are given.

Еще

Rhizobia, legume-rhizobial symbiosis, nodule formation, phytohormones, auxin, cytokinin, nod factor, flavonoids, root nodule organogenesis, lateral roots

Короткий адрес: https://sciup.org/143166689

IDR: 143166689

Список литературы Phytohormones and morphogenesis of root nodules and lateral roots of a legume plant

  • Adamowski M., Friml J. (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell. 27, 20-32
  • Akimova G.P., Sokolova M.G. (2012) Cytokinin content during early stages of legume-rhizobium symbiosis and effect of hypothermia. Russ. J. Plant Physiol. 59, 656-661
  • Bauer P., Ratet P., Crespi M.D., Kondorosi A. (1996) Nod factors and cytokinins induce similar cortical cell division, amyloplast deposition and MsEnod12A expression patterns in alfalfa roots. Plant J. 10, 91-106
  • Blilou I., Ocampo J., Garcia-Garrido J. M. (1999) Resistance of pea roots to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid. J. Exp. Bot. 50, 1663-1668
  • Breakspear A., Liu C., Roy S., Stacey N., Rogers C., Trick M., Morien G., Mysore K.S., Wen J., Olroyd G.E.D., Downie J.A., Murray J. D. (2014) The root hair "Infectome" of Medicago trucatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell. 26, 4680-4701
  • Сhandler J.W., Werr W. (2015) Cytokinin-auxin crosstalk in cell type specification. Trends Plant Sci. 20, 292-300
  • Cooper J.B., Long S.R. (1994) Morphogenetic rescue of Rhizobium meliloti nodulation mutants by trans-zeatin secretion. Plant Cell. 6, 215-225
  • Champion A., Lucas M., Tromas A., Vaissayre V., Crabos A., Diedhiou I., Prodjinoto H., Moukouanga D., Pirolles E., Cissoko M., Bonneau J., Gherbi H., Franche C., Hocher V., Svistoonoff S., Laplaze L. (2015) Inhibition of auxin signaling in Frankia species-infected cells in Casuarina glauka nodules leads to increased nodulation. Plant Physiol. 167, 1149-1157
  • D’Haeze W., De Rycke R., Mathis R., Goormachtig S., Pagnotta S., Verplancke C., Capoen W., Holsters M. (2003) Reactive oxygen species and ethylene play appositive role in lateral root base nodulation of a semiaquatic legume. Proc. Natl. Acad. Sci. USA. 100, 11789-11794
  • De Long A., Mockaitis K., Christensen S. (2002) Protein phosphorylation in the delivery of and response to auxin signals. Plant Mol. Biol. 49, 285-303
  • De Smet I., Signora L., Beekman T., Inze D., Foyer C.H., Zhang H. (2003) An abscisic acid -sensitive checkpoint in lateral root development of Arabidopsis. Plant J. 39, 543-555
  • Ding Y.L., Kalo P., Yendrek C., Sun J.H., Liang Y., Marsh J.F., Harris J.M., Oldroyd G.E.D. (2008)) Abscisic acid coordinates Nod factor and cytokinin signaling during the regulation of nodulation in Medicago trancatula. Plant Cell. 20, 2681-2685
  • Ding Y., Oldroyd G.E.D. (2009) Positioning the nodule, the hormone dictum. Plant Signaling Behavior. 4, 89-93
  • Downie J.A. (2007) Infectious heresy. Science. 316, 1296-1297
  • Dunlap J.R., Robacker K.M. (1990) Abscisic acid alters the metabolism of indole-3-acetic acid in senescing flowers of Cucumis melo. Plant Physiol. 94, 870-874
  • Fang Y., Hirsh A.M. (1998) Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa. Plant Physiol. 116, 53-68
  • Ferreira F.J., Kieber J.J. (2005) Cytokinin signaling. Curr. Opin. Plant Biol. 8, 518-525
  • Ferguson B.J., Ross J.J., Reid J.B. (2005) Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiol. 138, 2396-2405
  • Ferguson B.J., Indrasumunar A., Hayashi S., Lin Y-H., Reid D.E., Gresshoff P.M. (2010) Molecular analysis of legume nodule development and autoregulation. J. Integr. Plant Biol. 52, 61-76
  • Fernandez-Marcos M., Sanza L., Lewis D.R., Muday G.K., Lorenzo O. (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-Formed 1 (PIN1)-dependent acropetal auxin transport. Proc. Natl. Acad. Sci. USA. 108, 18506-18511
  • Gage D.J., Margolin W. (2000) Hanging by a thread: invasion of legume plants by rhizobia. Curr. Opin. Microbiol. 3, 613-617
  • Garcia-Garrido J.M., Ocampo J.A. (2002) Regulation of the plant defense response in arbuscular mycorrhizal symbiosis. J. Exp. Bot. 53, 1377-1386
  • Giraud E., Moulin L., Vallenet D., Barbe V., Cytryn E., Sadowsky M. et al. (2007) Legumes symbioses: absence of Nod genes in photosynthetic Bradyrhizobia. Science. 316, 1307-1312
  • Glyan’ko A.K., Makarova L.E., Vasil’eva G.G., Mironova N.V. (2005) Possible involvement of hydrogen peroxide and salicylic acid in the legume-Rhizobium symbiosis. Biology Bulletin. 32, 245-249
  • Glyan’ko A.K., Akimova G.P., Sokolova M.G., Makarova L.E., Vasil’eva G.G. (2007) The defense and regulatory mechanisms during development of legume-Rhizobium symbiosis. Applied Biochem. Microbiol. 43, 260-267
  • Glyan’ko A.K. (2014) Significance of Nod factors Rhizobium in induction of signaling systems of formation of legume-Rhizobium symbiosis (Znachenie Nod factora Rhizobium v indukcii signal’nykh system pri obrasovanii bobovo-rizobial’nogo simbioza).The Bulletin Кharkiv National Agrarian University. Series Biology. 3 (33), 6-14. (Вicн. Харкiв. нац. аграрн. ун-ту. Серiя Бiологiя) (in Ukrainian)
  • Gonzalez-Rizzo S., Crespi M. and Frugier F. (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell. 18, 2680-2693
  • Gourion B., Berrabah F., Ratet P., Stacey G. (2015) Rhizobium-legume symbioses: the crucial role of plant immunity. Trends Plant Sci. 20, 186-194
  • Gray W.M., Kepinski S., Rouse D., Leyser O., Estelle M. (2001) Auxin regulates SCF (TIR1)-dependent degradation of AUX/IAA proteins. Nature. 414, 271-276
  • Grobbelaar N., Clarke B., Hough M.C. (1971) The nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L. III. The effect of carbon dioxide and ethylene. Plant Soil, 35, 215-223
  • Guinel F.C., Geil R.D. (2002) A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can. J. Bot. 80, 695-720
  • Heidstra R., Yang W.C., Yalcin Y., Peck S., Emons A.M., van Kammen A., Bisseling T. (1997) Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development. 124, 1781-1787
  • Hirsch A.M., Bhuvaneswari T.V., Torrey J.G., Bisseling T. (1989) Early nodule genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc. Natl. Acad. Sci. USA. 86, 1244-1248
  • Hirsch A.M. (1992) Developmental biology of legume nodulation. New Phytol. 122, 211-237
  • Hirsch A.M., Fang Y. (1994) Plant hormones and nodulation: what’s the connection? Plant Mol. Biol. 26, 5-9
  • Hirsch A.M., Fang Y., Asad S., Kapulnik Y. (1997) The role phytohormones in plant-microbe symbioses. Plant Soil. 194, 171-184
  • Ioio R.D., Linhares F.S., Scacchi E., Casamitjana-Martinez E., Heidstra R., Costantino P., Sabatini S. (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr. Biol. 17, 678-682
  • Jacobs M., Rubery P. H. (1988) Naturally occurring auxin transport regulators. Science. 241, 346-349
  • Kiseleva A.A., Tarachovskaya E.R., Shishova M.F. (2012) Biosynthesis of phytohormones in alga. Russ. J. Plant Physiol. 59, 595-610
  • Kim S.K., Chang S.C., Lee E.J., Chung W.S., Kim Y.S., Hwang S., Lee J.S. (2000) Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol. 123, 997-1004
  • Kolupaev Yu.Ye., Karpets Yu.V. (2010) Formation of plants adaptive reactions to abiotic stressors influence (Formirovanie adaptivnykh reakcij rastenij na dejstvie abioticheskikh stressorov). Kiev, Osnova, 350 p. (in Ukrainian)
  • Krugova E.D. (2009) Specific strategies of nodule and phytopathogenic bacteria in plant infection. Physiology and Biochemistry Cult. Plants (Fiziologiya i biokhimiya kulturnykh rastenij). 41, 3-15 (in Ukrainian)
  • Kulaeva O.N. (1973) Citokinins, their structure and function (Citokinins, ikh struktura i funkciya). Moskva: Nauka, 264 p.
  • Kuppusamy K.T., Ivashuta S., Bucciarelli B., Vance C.P., Gantt J.S., VandenBosch K.A. (2009) Knockdown of cell division cycle16 reveals an inverse relationship between lateral root and nodule numbers and a link to auxin in Medicago truncatula. Plant Physiol. 151, 1155-1166
  • Laplaze L., Lucas M., Champion A. (2015) Rhizobial root hair infection requires auxin signaling. Trends Plant Sci. 20, 332-334
  • Liang Y., Mitchell D.M., Harris J.M. (2007) Abscisic acid rescues the root meristem defects of the Medicago truncatula lard mutant. Dev. Biol. 304, 297-307
  • Leyser O. (2006) Dynamic integration of auxin transport and signaling. Curr. Biol. 16, 424-433
  • Libbenga K.R., van Iren F., Bogera R.J., Schraag-Lamera M.F. (1973) The role of hormones and gradients in the initiation of cortex proliferation and nodule formation in Pisum sativum L. Planta. 114, 29-39
  • Liu C-W., Breakspear A., Roy S., Murray J.D. (2015) Cytokinin responses counterpoint auxin signaling during rhizobial infection. Plant Signal. Behavior. 10, e1019982
  • Liu W-Z, Kong D-D., Gu X-X., Gao H-B., Wang J-Z., Xia M., Gao Q., Tian L-L., Xu Z-H., Bao F., Hu Y., Ye N-S., Pei Z-M., He Y-K. (2013) Cytokinins can act as suppressors of nitric oxide in Arabidopsis. Proc. Natl. Acad. Sci. USA. 110, 1548-1553
  • Ljung K., Bhalerao R.P., Sandberg G. (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 21, 465-474
  • Lohar D.P., Schaff J.E., Laskey J.G., Kieber J.J., Bilyeu K.D., Bird D.M. (2004) Cytokinins play opposite roles in lateral root formation, and nematode and rhizobial symbioses. Plant J. 38, 203-214
  • Lomax T.L., Muday G.K., Rubery P.H. (1995) Auxin transport. In: Plant hormones. Dordrecht: Kluwer, pp. 509-530
  • Martinez-Abarka F., Herrera-Cervera J.A., Bueno P., Sanjuan J., Bisseling T., Olivares J. (1998) Involvement of salicylic acid in the establishment of the Rhizobium meliloti-alfalfa symbiosis. Mol. Plant-Microbe Interac. 11, 153-155
  • Mathesius U., Schlaman H.R.M., Spaink H.P., Sautter C., Rolfe B.G., Djordjevic M.A. (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J. 14, 23-34
  • Mathesius U., Charon C., Rolfe B.G., Kondorosi A., Crespi M. (2000) Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation or localized cytokinin addition. Mol. Plant-Microbe Interac. 13, 617-628
  • Mathesius U. (2001) Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J. Exp. Bot. 52, 419-426
  • Moubayidin L., Mambro R., Sabatini S. (2009) Cytokinin-auxin crosstalk. Trends Plant Sci. 14, 557-562
  • Muller B., Sheen J. (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature.453, 1094-1097
  • Mulligan J.T., Long S.K. (1989) A family of activator genes regulates expression of Rhizobium meliloti nodulation genes. Genetics. 122, 7-18
  • Molodchenkova O.O. (2001) Assumed functions of salicylic acid in plants. Physiology and Biochemistry Cult. Plants (Fiziologiya i biokhimiya kulturnykh rastenij). 33, 463-473 (in Ukrainian)
  • Molodchenkova O.O. (2008) Influence of salicylic acid on the response of corn seedlings under abiotic stress (Vliyanie salicylic kisloth na otvetnye reakcii prorostkov kukuruzy pri abioticheskih stressah). The Bulletin Kharkiv National Agrarian University. Series Biology. 3 (15), 24-32 (Вicн. Харкiв. нац. аграрн. ун-ту. Серiя Бiологiя) (in Ukrainian)
  • Murray J.D., Karas B.J., Sato S., Tabata S., Amyot L., Sczczyglowski K. (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science.315, 101-104
  • Murray J.D. (2011) Invasion by invitation: rhizobial infection in legumes. Mol. Plant-Microbe Interac. 24, 631-639
  • Naseem M., Kaltdorf M., Dandekar T. (2015) The nexus between growth and defense signaling: auxin and cytokinin modulate plant immune response pathways. J. Exp. Bot. 66, 4885-4896
  • Nomura T., Nakayama M., Reid J.B., Takeuchi Y., Yokota T. (1997) Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiol. 113, 31-37
  • Nordström A., Tarkowski P., Tarkowska D., Norbaek R., Astot C., Dolezal K., Sanberg G. (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin -regulated development. Proc. Natl. Acad. Sci. USA. 101, 8039-8044
  • Olah B., Briere C., Becard G., Denarie J., Gough C. (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula. Plant J. 44, 195-207
  • Oldroyd G.E., Engstrom E.M., Long S.R. (2001) Ethylene inhibits the Nod factor signal transduction pathway of Medicago trancatula. Plant Cell. 13, 1835-1849
  • Oldroyd G.E., Downie J.A. (2004) Calcium, kinases and nodulation signaling in legumes. Nat. Rev. Mol. Cell Biol. 5, 566-576
  • Oldroyd G.E. (2007) Nodules and hormones. Science. 315, 52-53
  • Oldroyd G.E., Downie J.A. (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 59, 519-546
  • Oldroyd G.E., Murray J.D., Poole P.S., Downie J.A. (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 45, 119-144
  • Penmetsa R.V., Cook D. R. (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science. 275, 527-530
  • Peters N.K., Crist-Estes D.K. (1989). Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol. 91, 690-693
  • Peer W.A., Murphy A.S. (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci. 12, 556-563
  • Plet J., Wasson A., Ariel F., Le Signor C., Baker D. (2011) MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago trancatula. Plant J. 65, 622-633
  • Polevoy V.V. (1982) Phytohormones (Fitogormony). Leningrad: Izdatel’stvo LGU, 248 p.
  • Ramu S.K., Peng H.M., Cook D.R. (2002) Nod factor induction of reactive oxygen species production is correlated with expression of the early nodulin gene rip1 in Medicago trancatula. Mol. Plant Microbe Interac. 15, 522-528
  • Ross J.J., O’Neill D.P., Smith J.J., Kerckhoffs L.H.J., Elliott R.C. (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J. 21, 547-552
  • Shakirova F.M. (2001) Non-specific resistance of plants to stress factors and its regulation (Nespecificheskaya ustojchivost’ pastenij k stressovym faktoram i ee pegulyaciya). Ufa, Gilem, 160 p.
  • Sakakibara H. (2005) Cytokinin biosynthesis and regulation. Vitam. Horm. 72, 271-287
  • Shaw S.L., Long S.R. (2003) Nod factor inhibition of reactive oxygen efflux in a host legume. Plant Physiol. 132, 2196-2204
  • Skoog F., Miller C.O. (1957) Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Symp. Soc. Exp. Biol. 54, 118-131
  • Stacey G., McAlvin C.B., Sung-Yong Kim, Olivares J., Sato M.J. (2006) Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula. Plant Physiol. 141, 1473-1481
  • Sun J., Cardoza V., Mitchell D.M., Bright L., Olroyd G., Harris J.M. (2006) Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J. 46, 961-970
  • Suzuki A., Akune M., Kogiso M., Imagama Y., Osuki K., Uchium T., Higashi S., Han S-Y., Yoshida S., Asami T., Abe M. (2004) Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant Cell Physiol. 45, 914-922
  • Terrile M.C., Paris R., Calderon L.I.A., Inglesias M.J., Lamattina L., Estelle M., Casalongue C.A. (2012) Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidipsis transport inhibitor Response1 auxin receptor. Plant J. 70, 492-500
  • Thimann K.V. (1936) On the physiology of the formation of nodules on legume roots. Proc. Natl. Acad. Sci. USA. 22, 511-514
  • Timmers A.C.J. (2008) The role of the plant cytoskeleton in the interaction between legumes and rhizobia. J. Microsc. 231, 247-256
  • Tirichine L., Sandal N., Madsen L.H., Radutoiu S., Albrektsen A.S. (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science. 315, 104-107
  • Truchet G., Barker D.G., Camut S., de Billy F., Vasse J., Huguet T. (1989) Alfalfa nodulation in the absence of Rhizobium. Mol. Gen. Genet. 219, 65-68
  • Wasson A.P., Pellerone F.I., Mathesius U. (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell. 18, 1617-1629
  • Werner T., Motyka V., Laucou V., Smets R., Van Onckelen H., Schmuelling T. (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell. 15, 2532-2550
  • Woodward A.W., Bartel B. (2005) Auxin: regulation, action, and interaction. Ann. Bot. 95, 707-735
  • Zhang J., Subramanian S., Stacey G., Yu O. (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J. 57, 171-183
  • Zhao Y. (2010) Auxin biosynthesis and its role in plant development. Annu. Rev.Plant Biol. 61, 49-64
Еще
Статья обзорная