Phytomelatonin: an emerging regulator of oxidative imbalance due to abiotic stress

Автор: Vishwas D.K.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.20, 2024 года.

Бесплатный доступ

Drought, heat, cold, flood, salt, light, air pollution, and pesticide-induced oxidative damage have a detrimental impact on plant growth, reproduction, and survival. Thus, our research seeks to establish through a tryptophan-derivative plant molecule known as phytomelatonin, which may play a significant function in plant responses to various environmental stresses. Through the pieces of literature analysis, we reviewed the exogenous melatonin application and its influence on oxidative stress such as ROS and RNS generated in plant tissues under different abiotic stimuli. Our investigations also concern how phytomelatonin impacts the level of antioxidative proteins such as Superoxide dismutase (SOD), Catalase, and Glutathione Peroxidase (GPx) under these stimuli. After our deep investigation through the literature survey, we found that phytomelatonin acts as a powerful scavenging agent to detoxify ROS and RNS under abiotic threats. Additionally, it also significantly enhanced the level of oxidant proteins to minimize the negative impact of reactive species under these threats. In this way, phytomelatonin exhibits multiple crucial capabilities including root growth, leaf senescence, photosynthetic rate, and increased biomass. Moreover, we discussed in brief how phytomelatonin acts as an emerging regulator of oxidative imbalance between oxidative stress and antioxidative proteins induced by abiotic stresses, generated primarily in cell organelles, nuclei, plasma membrane, cytosol, and apoplast. Thus, it may be concluded that the phytomelatonin molecule might be improving the balance of these stressful conditions in plants for its better-surviving capacities under different threatful situations.

Еще

Abiotic stress, antioxidative proteins, phytomelatonin, molecular mechanism

Короткий адрес: https://sciup.org/143182793

IDR: 143182793

Список литературы Phytomelatonin: an emerging regulator of oxidative imbalance due to abiotic stress

  • Agathokleous, E., Kitao, M., & Calabrese, E. J. (2019). New insights into the role of melatonin in plants and animals. Chemico-Biological Interactions, 299, 163-167.
  • Ahammed, G. J., Xu, W., Liu, A., & Chen, S. (2019). Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L., Environmental and Experimental Botany, 161, 303-311.
  • Ahmad, S., Kamran, M., Zhou, X., Ahmad, I., Meng, X., Javed, T., Iqbal, A., Wang, G., Su, W., Wu, X., Ahmad, P., & Han, Q. (2021). Melatonin improves the seed filling rate and endogenous hormonal mechanism in grains of summer maize. Physiologia Plantarum, 172(2), 1059-1072.
  • Ahmad, S., Wang, G.Y., Muhammad, I., Farooq, S., Kamran, M., Ahmad, I., Zeeshan, M., Javed, T., Ullah, S., Huang, J. H., & Zhou, X. B. (2022). Application of melatonin-mediated modulation of drought tolerance by regulating photosynthetic efficiency, chloroplast ultrastructure, and endogenous hormones in maize. Chem. Biol. Technol. Agric. 9, 5.
  • Anjum, N. A., Sofo, A., Scopa, A., Roychoudhury, A., Gill, S. S., Iqbal, M., Lukatkin, A. S., Pereira, E., Duarte, A. C., & Ahmad, I. (2015). Lipids and proteins--major targets of oxidative modifications in abiotic stressed plants. Environmental Science and Pollution Research International, 22(6), 4099-4121.
  • Aranda-Rivera, A. K., Cruz-Gregorio, A., Arancibia-Hernandez, Y. L., Hernandez-Cruz, E.Y., & Pedraza-Chaverri, J. (2022). RONS and Oxidative Stress: An Overview of Basic Concepts. Oxygen, 2(4), 437-478.
  • Arnao, M. B. (2014). Phytomelatonin: discovery, content, and role in plants. Advances in Botany, 2014, 1-12.
  • Arnao, M. B., & Hernandez-Ruiz, J. (2006). The physiological function of melatonin in plants. Plant Signaling & Behavior, 1(3), 89-95.
  • Arora, D., & Bhatla, S. C. (2017). Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radical Biology & Medicine, 106, 315-328.
  • Ayala, A., Munoz, M. F., & Arguelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 360438.
  • Baraibar, M. A., Ladouce, R., & Friguet, B. (2013). Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging. Journal of Proteomics, 92, 63-70.
  • Cadet, J., & Wagner, J. R. (2013). DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harbor Perspectives in Biology, 5(2), a012559.
  • Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science, 2014, 1-13.
  • Chitimus, D. M., Popescu, M. R., Voiculescu, S. E., Panaitescu, A. M., Pavel, B., Zagrean, L., & Zagrean, A. M. (2020). Melatonin's Impact on Antioxidative and Anti-Inflammatory a Hormone: New Physiological and Clinical Insights. Endocrine Reviews, 39(6), 990-1028.
  • Dai, L., Li, J., Harmens, H., Zheng, X., & Zhang, C. (2020). Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Plant Physiology and Biochemistry: PPB, 149, 86-95.
  • Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2,
  • Hussain, M., Liu, S., & Qiu, D. (2019). Melatonin Mediates Enhancement of Stress Tolerance in Plants. International Journal of Molecular Sciences, 20(5), 1040.
  • Del Rio L. A. (2015). ROS and RNS in plant physiology: an overview. Journal of Experimental Botany, 66(10), 2827-2837.
  • Di Meo, S., Reed, T. T., Venditti, P., & Victor, V. M. (2016). Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxidative Medicine and Cellular Longevity, 2016, 1245049.
  • Ding, F., Ren, L., Xie, F., Wang, M., & Zhang, S. (2022). Jasmonate and Melatonin Act Synergistically to Potentiate Cold Tolerance in Tomato Plants. Frontiers in Plant Science, 12, 763284.
  • Dutta, S., Mitra, M., Agarwal, P., Mahapatra, K., De, S., Sett, U., & Roy, S. (2018). Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signaling & Behavior, 13(8), e1460048.
  • Fan, X., Zhao, J., Sun, X., Zhu, Y., Li, Q., Zhang, L., Zhao, D., Huang, L., Zhang, C., & Liu, Q. (2022). Exogenous Melatonin Improves the Quality Performance of Rice under High Temperature during Grain Filling. Agronomy, 12(4), 949.
  • Ferreira, C. A., Ni, D., Rosenkrans, Z. T., & Cai, W. (2018). Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Research, 11(10), 4955-4984.
  • Gong, X., Shi, S., Dou, F., Song, Y., & Ma, F. (2017). Exogenous Melatonin Alleviates Alkaline Stress in Malus hupehensis Rehd. by Regulating the Biosynthesis of Polyamines. Molecules (Basel, Switzerland), 22(9), 1542.
  • Hardeland, R. (2012). Melatonin in aging and disease -multiple consequences of reduced secretion, options and limits of treatment. Aging and Disease, 3(2), 194-225.
  • Hardeland, R. (2015). Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions. Journal of Experimental Botany, 66(3), 627-646.
  • Hollosy F. (2002). Effects of ultraviolet radiation on plant cells. Micron (Oxford, England: 1993), 33(2), 179197.
  • Hoque, M. N., Tahjib-Ul-Arif, M., Hannan, A., Sultana, N., Akhter, S., Hasanuzzaman, M., Akter, F., Hossain, M. S., Sayed, M. A., Hasan, M. T., Skalicky, M., Li, X., & Brestic, M. (2021). Melatonin Modulates Plant Tolerance to Heavy Metal Stress: Morphological Responses to Molecular Mechanisms. International Journal of Molecular Sciences, 22(21), 11445.
  • Hu, S., Ding, Y., & Zhu, C. (2020). Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. Frontiers in Plant Science, 11, 375.
  • Huang, H., Ullah, F., Zhou, D. X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS Regulation of Plant Development and Stress Responses. Frontiers in Plant Science, 10, 800.
  • Jena, A. B., Samal, R. R., Bhol, N. K., & Duttaroy, A. K. (2023). Cellular Red-Ox system in health and disease: The latest update. Biomedicine & pharmacotherapy = Biomedecine & Cipolla-Neto, J., & Amaral, F. G. D. (2018). Melatonin as Debnath, B., Islam, W., Li, M., Sun, Y., Lu, X., Mitra, S., pharmacotherapie, 162, 114606.
  • Juan, C. A., Perez de la Lastra, J. M., Plou, F. J., & Perez-Lebena, E. (2021). The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. International Journal of Molecular Sciences, 22(9), 4642.
  • Kalinina, E., & Novichkova, M. (2021). Glutathione in protein redox modulation through S-glutathionylation and S-nitrosylation. Molecules (Basel, Switzerland), 26(2), 435.
  • Kellner, M., Noonepalle, S., Lu, Q., Srivastava, A., Zemskov, E., & Black, S. M. (2017). ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). Advances in Experimental Medicine and Biology, & Mori, W. (1958). Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc, 80 (10), 2587.
  • Li, R., Jia, Z., & Trush, M. A. (2016). Defining ROS in Biology and Medicine. Reactive Oxygen Species (Apex, N.C.), 1(1), 9-21.
  • Liping, G., Ningda, G., & Quanli, G. (2017). Assessment of Cd, Pb, Hg and As contamination in soils and plants in Isatis indigotica cultivated regions in Hebei Province. Chinese Journal of Eco-Agriculture, 25(10), 1535-1544.
  • Mannino, G., Pernici, C., Serio, G., Gentile, C., & Bertea, C. M. (2021). Melatonin and Phytomelatonin: Chemistry, Biosynthesis, Metabolism, Distribution and Bioactivity in Plants and Animals-An Overview. International Journal of Molecular Sciences, 22(18), 9996.
  • Mazdiyasni, O., Sadegh, M., Chiang, F., & AghaKouchak, A. (2019). Heat wave Intensity Duration Frequency Curve: A Multivariate Approach for Hazard and Attribution Analysis. Scientific Reports, 9(1), 14117.
  • Nawaz, K., Chaudhary, R., Sarwar, A., Ahmad, B., Gul, A., Hano, C., Abbasi, B. H., Anjum, S. (2021). Melatonin as Master Regulator in Plant Growth, Development and Stress Alleviator for Sustainable Agricultural Production: Current Status and Future Perspectives. Sustainability, 13(1), 294.
  • Niu, L., & Liao, W. (2016). Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium. Frontiers in Plant Science, 7, 230.
  • Pandita, D. (2021). Chapter 17 - Reactive oxygen and nitrogen species: antioxidant defense studies in plants. Plant Perspectives to Global Climate Changes, Academic Press, 355-371.
  • Pardo-Hernandez, M., Lopez-Delacalle, M., & Rivero, R. M. (2020). ROS and NO Regulation by Melatonin Under Abiotic Stress in Plants. Antioxidants (Basel, Switzerland), 9(11), 1078.
  • Qari, S. H., Hassan, M. U., Chattha, M. U., Mahmood, A., Naqve, M., Nawaz, M., Barbanti, L., Alahdal, M. A., & Aljabri, M. (2022). Melatonin Induced Cold Tolerance in Plants: Physiological and Molecular Responses. Frontiers in Plant Science, 13, 843071.
  • Reiter, R. J., Poeggeler, B., Tan -x., D., Chen -d., L., Manchester, L. C., & Guerrero, J. M. (1993). Antioxidant capacity of melatonin: A novel action not requiring a receptor. Neuroendocrinology Letters, 15(1-2), 103-116.
  • Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants (Basel), 10(2): 1-37.
  • Sharma, P., Jha, A. B., Dubey, R. S., Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1-26.
  • Silalert, P., & Pattanagul, W. (2021). Foliar application of melatonin alleviates the effects of drought stress in rice (Oryza sativa L.) seedlings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(3), 12417.
  • Sun, C., Liu, L., Wang, L., Li, B., Jin, C., & Lin, X. (2021). Melatonin: A master regulator of plant development and stress responses. Journal of 967, 105-137. Lerner, A. B., Case, J. D., Takahashi Y., Lee, T. H., Integrative Plant Biology, 63(1), 126-145.
  • Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., & McDonald, G. K. (2011). Additive effects of Na+ and Cl- ions on barley growth under salinity stress. Journal of Experimental Botany, 62(6), 2189-2203.
  • Tiwari, R. K., Lal, M. K., Naga, K. C., Kumar, R., Chourasia, K. N., Subhash, S., Kumar, D., & Sharma, S. (2020). Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops. Scientia Horticulturae, 272, 109592.
  • Tordjman, S., Chokron, S., Delorme, R., Charrier, A., Bellissant, E., Jaafari, N., & Fougerou, C. (2017). Melatonin: Pharmacology, Functions and Therapeutic Benefits. Current Neuropharmacology, 15(3), 434-443.
  • Wang, Y., Reiter, R. J., & Chan, Z. (2018). Phytomelatonin: a universal abiotic stress regulator. Journal of Experimental Botany, 69(5), 963-974.
  • Weber G. F. (2014). DNA Damaging Drugs. Molecular Therapies of Cancer, 9-112.
  • Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q., & Cai, Y. (2019). The Roles of Environmental Factors in Regulation of Oxidative Stress in Plant. BioMed Research International, 2019, 9732325.
  • Yan, F., Wei, H., Li, W., Liu, Z., Tang, S., Chen, L., Ding, C., Jiang, Y., Ding, Y., & Li, G. (2020). Melatonin improves K+ and Na+ homeostasis in rice under salt stress by mediated nitric oxide. Ecotoxicology and Environmental Safety, 206, 111358.
  • Yujin, P., Cisse, E.M., Lijia, Z., Miao, L., Nawaz, M., & Yang, F. (2021). Coupling exogenous melatonin with Ca2+ alleviated chilling stress in Dalbergia odorifera T. Chen. Trees, 35, 1541 - 1554.
  • Zhang, H. J., Zhang, N., Yang, R. C., Wang, L., Sun, Q. Q., Li, D. B., Cao, Y. Y., Weeda, S., Zhao, B., Ren, S., & Guo, Y. D. (2014). Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). Journal of Pineal Research, 57(3), 269-279.
  • Zhao, H., Zhang, K., Zhou, X., Xi, L., Wang, Y., Xu, H., Pan, T., & Zou, Z. (2017). Melatonin alleviates chilling stress in cucumber seedlings by up-regulation of CsZat12 and modulation of polyamine and abscisic acid metabolism. Scientific Reports, 7(1), 4998.
Еще
Статья обзорная