Phytostabilization potential of yard long bean in removing cadmium from soil

Автор: Deivanai S., Thulasyammal R.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.10, 2014 года.

Бесплатный доступ

The effect of cadmium (Cd) on growth, physiology, distribution and tolerance was examined in root, shoot and leaves of yard-long bean ( Vigna unguiculata subsp. sesquipedalis L.). The seeds were grown in pot culture under laboratory conditions for 60 days in Ferriera and Davis nutrient solution with three different concentrations (0.5, 1.0 and 2.0 mM) of cadmium. Cd toxicity was evident from chlorosis in young leaves and increased concentrations of Cd brought significant negative effects on plant growth, photosynthetic rate and protein biosynthesis. Translocation of Cd was found to be more in roots than the above ground parts and the accumulation was in the order of root > shoot > leaf. Low root to shoot translocation of Cd makes the crop ideal for phytostabilization. Relatively high metal tolerance index obtained in the study indicated that the crop has greater tolerance to increase Cd exposure, though accumulation of Cd had altered thickness of root and root biomass. Owing to the crop’s adaptability to high temperature, drought conditions and ability to retain Cd in roots makes it a promising candidate for phytostabilization of soil contaminated by Cd.

Еще

Yard-long bean, photosynthetic rate, biomass production, cadmium toxicity, phytostabilization

Короткий адрес: https://sciup.org/14323868

IDR: 14323868

Список литературы Phytostabilization potential of yard long bean in removing cadmium from soil

  • Adriano, D.C. (2001). Trace Elements in Terrestrial Environments Biogeochemistry Bioavailability and Risk of Metals, second ed. Springer-Verlag, New-York
  • Benavides, M.P., Gallego, S.M. and Tomaro, M.L. (2005). Cadmium toxicity in plants. Braz J. Plant Physiol., 17, 21-34
  • Bidar, G., Pruvot, C., Garcon, G., Verdin, A., Shirali, P. and Douay, F. (2009). Seasonal and annual variations of metal uptake, bioaccumulation and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal contaminated field. Environ Sci & Pollut Res. Int., 16, 42-53
  • Bradford, M.M. (1976). A dye binding assay for protein. Analytical Biochemistry., 72, 248-254
  • Chaney, R.L. (1983). Plant uptake of inorganic waste. In Land Treatment of Hazardous Waste, (eds.) J.E. Parr, P.B. Marsh, J.M. Kla, Noyes Data Corp, Park Ridge Il pp 50-76
  • Chhetri, D.R., Modak, S. and Safiruddin, A. (2004). Physiological and biochemical response of two ricebean (Vigna umbellata) cultivars to heavy metal stress. Environ & Ecology., 22(1), 27-33
  • Ferreira, R.B. and Davies, D.D. (1987). Protein degradation in Lemna with particular reference to ribulose bisphosphate carboxylase 1. The effect of light and dark. Plant Physiol., 83, 869-877
  • Hajiboland, R. (2005). An evaluation of the efficiency of cultural plants to remove heavy metal from growing medium. Plant Soil Environ., 51(4), 156-164
  • Hall, A.E. (2004). Breeding for adaptation to drought and heat in cowpea. Europ J Agronomy, 21, 447-454
  • Hamidou, F., Zombre, G., Guinko, S., Diouf, O. and Braconnier, N.D.A. (2007). Physiological, biochemical and agromorphological responses of five cowpea genotypes (Vigna unguiculata L. Walp.) to water deficit under green house conditions. Biotechnologie, Agronomie, Societe et Environnement, 11(3), 225-234
  • Harborne, J.B. (1984). Phytochemical methods: a guide to modern techniques of plant analysis. London, UK, Chapman & Hall
  • Hayat, S., Ali, B., Aiman Hasan, S. and Ahmad, A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot, 60, 33-41
  • John, R., Ahmad, P., Gadgil, K. and Sharma, S. (2008). Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ, 54(6), 262-270
  • Kabata-Pendias, A. and Dudka, S. (1990). Evaluating baseline data for cadmium in soils and plants in Poland. In: Element concentration cadasters in ecosystems. (Ed). Lieth, H and Markert, B. VCH erlagsgesllschaft, Federal Republic of Germany
  • Karimi, R., Chorom, Solhi S., Solhi, M. and Safe, A. (2012). Potential of Vicia faba and Brassica arvensis for phytoextraction of soil contaminated with cadmium, lead and nickel. Afr J Agric Res, 72(2), 3293 -3301
  • Kopittke, P.M., Blamey, F.P.C., and Menzies N.W. (2008). Toxicities of soluble Al, Cu and La include ruptures to rhizodermal and root cortical cells of cowpea. Plant Soil, 303, 217-227
  • Laemmli, U.K., Molbert, E., Showe, M. and Kelenberger, E. (1970). Form-determining function of genes required for the assembly of the head of bacteriophage T4. J Mol Bio, 49, 99-113
  • Lima, A.I.G., Pereira, S.I.A., Figueira, E.M.A.P., Caldeira, G.C.N. and Caldeira H.D.Q.M. (2006). Cadmium detoxification in roots of Pisum sativum seedlings: relationship between toxicity levels, thiol pool alterations and growth. Environ Exp Bot, 55, 149-162
  • Liu, F., Tang, Y., Du, R., Yang, H., Wu, Q. and Qiu R. (2010). Root foraging for zinc and cadmium requirement in Zn/Cd hyperaccumulator plant Sedum alfredii. Plant Soil, 327(1-2), 365-375
  • Lux, A., Martinka, M., Vaculik, M. and White, P.J. (2010). White root responses to cadmium in the rhizosphere: a review. J Exp Bot, 62(1), 21-37
  • Nedjimi, B. and Daoud, Y. (2009). Cadmium accumulation in Atriplex halimus subsp. Schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora, 204(4), 316-324
  • Ngayila, N., Botineau, M., Baudu, M. and Basly J.P. (2009). Myriophyllum alterniflorum DC. Effect of low concentrations of copper and cadmium on somatic and photosynthetic endpoints: A chemometric approach. Ecol Indicat, 9, 307-312
  • Ogbuehi, H.C., Onuh, M.O. and Ezeibekwe, L.O. (2011). Effect of spent engine oil pollution on the nutrient composition and accumulatin of heavy metal in cowpea (Vigna unguiculata L.Walp). Australian Journal of Agricultural Engineering, 2(4), 110-113
  • Page, V., Weisskopf, L. and Feller, U. (2006). Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytol, 171, 329-341
  • Palma, J.M., Sandalio, L.M., Javier Corpas, F., Romero Puertas, M.C., McCarthy, I. and Del Rio L.A. (2002). Plant protease protein degradation and oxidative stress: role of peroxisomes. Plant Physiol Biochem, 40, 521-530
  • Pastor, J., Hermandez, A.J., Prieto, N. and Fernandez Pascual, M. (2003). Accumulating behavior of Lupinus albus L. growing in a normal and a decalcified calic luvisol polluted with Zn. J Plant Physiol, 160(12), 1457-65
  • Pichtel, J. and Bradway, D.J. (2008). Conventional crops and organic amendments for Pb, Cd and Zn treatment at a severely contaminated site. Bioresour Technol, 99, 1242-1251
  • Qadir, S., Qureshi, M.I., Javed, S. and Abdin, M.Z. (2004). Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci, 167, 1171-1181
  • Redjala, T., Sterckeman, T. and Morel, J.L. (2009). Cadmium uptake by roots: Contribution of apoplast and of high low affinity membrane transport system. Environ Exp Bot, 67(1), 235-242
  • Rivelli, A.R., De Maria, S., Puschenreiter, M. and Gherbin, P. (2012). Accumulation of cadmium, zinc and copper by Helianthus annuus L.: Impact on plant growth and uptake of nutritional elements. Int J Phytoremediation, 14, 320-334
  • Salt, D.E., Smith, R.D. and Raskin, I. (1998). Phytoremediation. Ann Rev Plant Physiol Plant Mol Biol, 49, 643-668
  • Sarma, H. (2011). Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol, 4(2), 118-138
  • Scebba, F., Arduini, I., Ercoli, L. and Sebastiani, L. (2006). Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis. Biologia Plantarum, 50(4), 688-692
  • Shafiq, M., Zafar, I.M., & Athar M. (2008). Effect of lead and cadmium on germination and seedling growth of Leucaena leucocephala. J Appl Sci Environ Manage, 12(2), 61-66
  • Sharma, A., Sainger, M., Dwivedi, S., Srivastava, S., Tripathi, R.D. and Singh R.P. (2010). Genotypic variation in Brassica juncea (L.) Czern. cultivars in growth, nitrate assimilation, antioxidant responses and Phytoremediation potential during cadmium stress. J Environ Biol. 31(5), 773-780
  • Sun, Y.B., Zhou, Q.X. and Diao, C.Y. (2008). Effects of cadmium and arsenic on growth and metal accumulation of Cd accumulator Solanum nigrum L. Bioresour Technol, 99, 1103-1110
  • Utsunamyia, T. (1980). Japanese Patent Application No 55-72959
  • Vazquez, S., Agha, R., Granado, A., Sarro, M.J., Esteban, E., Penalosa, J.M. and Carpena, R.O. (2006), Use of white lupin plant for phytostabilization of Cd and As polluted acid soil. Water Air and Soil Pollution, 177(1-4), 349-365
  • Weatherley, P.E. (1950). Studies in the water relations of the cotton plant. I. The field measurement of water deficits in leaves. New Phytol, 49, 81-97
  • Wong, L., Zhou, Q.X., Ding, L.L. and Sun, Y.B. (2008). Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. J Hazard Mater, 154, 818-825
  • Ximenez-embun, P., Rodriguez-Sanz, B., Madrid-Albarran, Y. and Camara, C. (2002). Uptake of heavy metals by Lupin plants in artificially contaminated sand: preliminary results. Int J Environ Anal Chem, 82, 805-813
  • Zhou, W.B., Philippe, J. and Qiu, B.S. (2006): Growth and photosynthetic responses of the bloom-forming cyanobacterium Microcystis aeruginosa to elevated levels of cadmium. Chemosphere, 65, 1738-1746
Еще
Статья научная