Phytotoxicity of chromium (VI) on germination, growth attributes and pigmentation in cluster bean

Автор: Kholiya N., Kumar A.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.19, 2023 года.

Бесплатный доступ

An investigation was carried out to study the phytotoxic effect of chromium (VI) on seed germination, plant growth parameters and biosynthesis of pigments in cluster bean ( Cyamopsis tetragonoloba ). Four concentrations (1, 2, 4 and 8 µg ml-1) of Cr (VI) as potassium dichromate were applied to cluster bean seeds in solution culture. The rate of seed germination was observed every hour. Growth parameters were measured at the early seedling stage. The concentrations of chlorophyll, carotenoid and anthocyanin in leaves were estimated. All the studied concentrations of Cr (VI) were found to be toxic to cluster bean. The speed of seed germination slowed down under Cr (VI) stress. The root-shoot length, root-shoot fresh weight and root-shoot dry weight decreased with increasing concentrations of Cr (VI). The most deleterious effect was observed at 8 µg ml-1. Anthocyanin contents in cluster bean showed a significant ( P -1 and 2 µg ml-1 were moderately toxic while 4 µg ml-1 and 8 µg ml-1 were highly toxic to cluster bean.

Еще

Anthocyanin, chlorophyll, growth, seed germination, chromium toxicity

Короткий адрес: https://sciup.org/143180578

IDR: 143180578

Список литературы Phytotoxicity of chromium (VI) on germination, growth attributes and pigmentation in cluster bean

  • Aery, N.C. (2010) Manual of Environmental Analysis. CRC Press, USA.
  • Ai, T.N., A.H. Naing, B.W. Yun, S.H. Lim and C.K. Kim (2018) Overexpression of RsMYBl enhances anthocyanin accumulation and heavy metal stress tolerance in transgenic petunia. Front. Plant Sci., 9, 1388.
  • Akinci, I.E. and S. Akinci (2010) Effect of chromium toxicity on germination and early seedling growth in melon (Cucumis melo L.). Afr. J. Biotechnol., 9, 4589-4594.
  • Al-ansari, F. and T. Ksiksi (2016) A quantitative assessment of germination parameters: the case of Crotalaria persica and Tephrosia apollinea. Open Ecol. J., 9, 13-21.
  • Amin, H., B.A. Arain, F. Amin and M.A. Surhio (2013) Phytotoxicity of chromium on germination, growth and biochemical attributes of Hibiscus esculentus L. Am. J. Plant Sci., 4, 2431-2439.
  • Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol., 24, 1-15.
  • Barnhart, J. (1997) Occurrences, uses, and properties of chromium. Regul. Toxicol. Pharmacol., 26, S3-S7.
  • Barton, L.L., G.V. Johnson, A.G. O'Nan and B.M. Wagener (2000) Inhibition of ferric chelate reductase in alfalfa roots by cobalt, nickel, chromium, and copper. J. Plant Nutr., 23, 18331845.
  • Bassi, M., M. Grazia and A. Ricci (1990) Effects of chromium (VI) on two freshwater plants, Lemna minor and Pistia stratiotes. 2 Biochemical and physiological observations. Cytobios, 62, 101-109.
  • Chidambaram, A., P. Sundaramoorthy, A. Murugan, K. Ganesh and L. Baskaran (2009) Chromium induced cytotoxicity in blackgram (Vigna mungo L.). J. Environ. Health Sci. Eng., 6, 17-22.
  • Dhindwal, A.S., B.P.S. Lather and J. Singh (1991) Efficacy of seed treatment on germination, seedling emergence and vigour of cotton (Gossypium hirsutum) genotype. Seed Res., 19, 59-61.
  • Chromium in agricultural soils and crops: a review. Water Air Soil Pollut., 228, 1-12.
  • Estokova, A.L. Palascakova and M. Kanuchova (2018) Study on Cr (VI) leaching from cement and cement composites. Int. J. Environ. Res. Public Health, 15, 824.
  • Fendorf, S.E. (1995) Surface reactions of chromium in soils and waters. Geoderma, 67, 55-71.
  • Fozia, A., A.Z. Muhammad, A. Muhammad and M.K. Zafar (2008) Effect of chromium on growth attributes in sunflower (Helianthus annuus L.). Res. J. Environ. Sci., 20, 1475-1480.
  • Free, H.F., C.R. McGill, J.S. Rowarth and M.J. Hedley (2010) The effect of biochars on maize (Zea mays) germination. N. Z. J. Agric. Res., 53, 1-4.
  • Jagetiya, B.L. and N.C. Aery (1994) Effects of low and toxic levels of nickel on seed germination and early seedling growth of moong. Bionature, 14, 57-61.
  • Jayakumar, K., C.A. Jaleel and M.M. Azooz (2008) Impact of cobalt on germination and seedling growth of Eleusine coracana L. and Oryza sativa L. under hydroponic culture. Glob. J. Mol. Sc., 3, 1820.
  • Joshi, N., P. Menon and A. Joshi (2019) Effect of chromium on germination in some crops of India. J. Agric. Sci. Bot., 3, 1-5.
  • Kabata-Pendias, A. (2000) Trace Elements in Soils and Plants. CRC press, USA.
  • Kumar, A. and N.C. Aery (2012) Influence of tungsten and molybdenum on seed germination and early seedling growth of wheat - A comparative study. NBU J. Plant Sc., 6, 1-5.
  • Kumar, A. and N.C. Aery (2010) Studies on the effect of tungsten on seed germination and early seedling growth of cowpea. Proc. Int. Symp. Nat. Res. Manag. Agric., 274-280.
  • Kumar, A. (2020) Inorganic soil contaminants and their biological remediation. In: Plant Responses to Soil Pollution (Eds.: P. Singh, S.K. Singh and S.M. Prasad). Springer, Singapore, pp. 133-153.
  • Murray, J.R. and W.P. Hackett (1991) Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiol., 97, 343-351.
  • Ertani, A., A. Mietto, M. Borin and S. Nardi (2017) anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiol. Plant., 172, 1711-1723.
  • Bishnoi, N.R., A. Dua, V.K. Gupta and S.K. Sawhney tannery industry effluent and its effect on plant metabolism and growth. J. Environ. Biol., 26, 197204.
  • Peralta, J.R., J.L. Gardea-Torresdey, K.J. Tiemann, E. Gomez, S. Arteaga, E. Rascon and J.G. Parsons (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull. Environ. Contam. Toxcol., 66, 727-734.
  • Rai, U.N., R.D. Tripati and N. Kumar (1992) Bioaccumulation of chromium and toxicity on growth, photosynthetic pigments, photosynthesis, in vivo nitrate reductase activity and protein in a chlorococcalean green alga Glaucocystisnostochinearum Itzigsohn. Chemosphere, 25, 721-732.
  • Differential chromium tolerance among eight mungbean cultivars grown in nutrient culture. J. Plant Nutr., 20, 473-483.
  • Sangwan, P., V. Kumar, R.S. Khatri and U.N. Joshi (2013) Chromium (VI) induced biochemical changes and gum content in cluster bean (Cyamopsis tetragonoloba L.) at different developmental stages. J. Bot., 1-8.
  • Sarkar, A. and S. Jana (1986) Heavy metal pollutant tolerance of Azolla pinnata. Wat. Air and Soil Poll., 27, 15-18.
  • Shanker, A.K., C. Cervantes, H. Loza-Tavera and S. Avudainayagam (2005) Chromium toxicity in plants. Environ. Int., 31, 739-753.
  • Surana, A. and N.C. Aery (2005) Effect of various species of lithium on seed germination and early seedling growth of barley (Hordeum vulgare). Int. J. Biosci., 3, 156-160.
  • Tripati, R.D. and S. Smith (2000) Effect of chromium (VI) on growth and physiology of giant duckweed Spirodella polyrrhiza (L.) Schileiden. In: Environmental Stress: Indication, Mitigation and Eco ü Conservation (Eds.: M.N. Yunus, L. Singh and J. de Kok). KAP, The Northlands pp.195-205.
  • Turner, R.G. and C. Marshall (1972) The accumulation of zinc by subcellular fractions of root of Agrostis tenuis Sibth. in relation to zinc tolerance. New Phytol., 71, 671-676.
  • Vajpayee, P., R.D. Tripathi, U.N. Rai, M.B. Ali and S.N. Singh (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere, 41, 1075-1082.
  • Vajpayee, P., U.N. Rai, M.B. Ali, R.D. Tripati, V. Yadav, S. Sinha and S.N. Singh (2001) Chromium induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluents. Bull. Environ. Cont. Toxicol., 67, 246-256.
Еще
Статья научная