Piecewise polynomial models for aggregation and regression analysis in remote sensing of the Earth problems
Автор: Popova Olga A.
Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu
Статья в выпуске: 8 т.11, 2018 года.
Бесплатный доступ
We discuss the procedures of data aggregation as a preprocessing stage for subsequent to regression modeling. An important feature of study is demonstration of the way how represent the aggregated data. It is proposed to use piecewise polynomial models, including spline aggregate functions. We show that the proposed approach to data aggregation can be interpreted as the frequency distribution. To study its properties density function concept is used. Applying data aggregation models as input and output variables we propose a new probability density function value linear regression model (Distributions Regression). To calculate the data aggregation and regression model we employ numerical probabilistic analysis (NPA). To demonstrate the degree of the correspondence of the proposed methods to reality, we developed a theoretical framework and considered numerical examples.
Numerical probabilistic analysis, data aggregation, regression modeling, piecewise polynomial model, density function
Короткий адрес: https://sciup.org/146279563
IDR: 146279563 | DOI: 10.17516/1999-494X-0118
Список литературы Piecewise polynomial models for aggregation and regression analysis in remote sensing of the Earth problems
- Dobronets B.S., Popova O.A. The numerical probabilistic approach to the processing and presentation of remote monitoring data. Journal of Siberian Federal University. Engineering & Technologies, 2016, 9(7), 960-971.
- Добронец Б.С., Попова О.А. Численный вероятностный анализ неопределенных данных. Красноярск, Сибирский федеральный университет, Институт космических и информационных технологий. 2014. 168 с.
- Billard L., Diday E. Symbolic Data Analysis: Conceptual Statistics and Data Mining. Chichester, John Wiley & Sons, Ltd., 2006. 321 p.
- Dias S., Brito P. Linear Regression Model with Histogram-Valued Variables. Published online in Wiley Online Library (wileyonlinelibrary.com). 2015, DOI: 10.1002/sam.11260
- Koenker R. Quantile regression. Cambridge university press, 2005. 349 p.
- Dobronets B.S., Krantsevich A.M., Krantsevich N.M. Software implementation of numerical operations on random variables. Journal of Siberian Federal University. Mathematics & Physics, 2013, 6(2), 168-173.
- Scott R.W. Multivariate density estimation: theory, practice, and visualization. New York, John Wiley & Sons, 2015. 380 p.
- Ahlberg J.H., Nilson E.N., Walsh J.L. The theory of splines and their applications. New York, Academic Press, 1967. 284 p.
- Dobronets B.S., Popova O.A. Improving the accuracy of the probability density function estimation. Journal of Siberian Federal University. Mathematics and Physics, 2017, 10(1), 16-21.
- Schweizer B. Distributions Are the Numbers of the Future. Proceedings of The Mathematics of Fuzzy Systems Meeting, eds. A. di Nola and A. Ventre, Naples, University of Naples, 1984, 137-149.