Plane-strain extrusion of a green type porous plastic material through a wedge-shaped die
Автор: Sevastyanov G.M.
Статья в выпуске: 2, 2022 года.
Бесплатный доступ
This paper presents the solutions for the plane-strain extrusion of porous material. We consider the problem of a stationary plastic flow through a wedge shaped die. We neglect friction between the die and the deformed material since it is rather a negative effect and should be avoided in manufacturing. The elliptic Green type yield condition and its piecewise-linear approximation are adopted for this problem. In the last case, we obtain analytical solution that links extrusion pressure and area reduction to the initial and final density of the porous material. For elliptic Green yield condition the problem reduced to nonlinear ODE that integrated numerically. The results are compared with known solution for Gurson model. The extrusion pressure predicted by the piecewise-linear model is lower than what obtained by the elliptic Green model. In turn, the pressure predicted by elliptic Green model is lower than the pressure obtained in the frame of Gurson model. At low values of area reduction, all three models predict approximately the same extrusion pressure. With a small initial porosity of the material, the Gurson model gives results that are close to the elliptic Green model, and with a large initial porosity, to the piecewise-linear Green model.
Porous solids, plasticity, green type yield condition, gurson criterion, plane-strain condition, wedge-shaped die
Короткий адрес: https://sciup.org/146282472
IDR: 146282472 | DOI: 10.15593/perm.mech/2022.2.01
Список литературы Plane-strain extrusion of a green type porous plastic material through a wedge-shaped die
- Breitenbach J. Melt extrusion: From process to drug delivery technology. Eur. J. Pharm. Biopharm., 2002, vol. 54, pp. 107-117. doi: 10.1016/S0939-6411(02)00061-9
- Singh S., Gamlath S., Wakeling L. Nutritional aspects of food extrusion: A review. Int. J. Food Sci. Tech., 2007, vol. 42, pp. 916-929. doi: 10.1111/j.1365-2621.2006.01309.x
- Anferov S.D., Skul'skiy O.I., Slavnov E.V. Mathematical modelling of vegetable oil plunger extraction. PNRPU Mechanics Bulletin, 2014, no. 1, pp. 31-56. doi: 10.15593/ perm.mech/2014.1.31-56
- Nadai A. Uber die Gleit- und Verzweigungsflachen einiger Gleichgewichtszustande bildsamer Massen und die Nachspannungen bleibend verzerrter Korper. Z. Phys., 1924, vol. 30, pp. 106-138. doi: 10.1007/BF01331828
- Hill R. Mathematical theory of plasticity. 1950. Clarendon Press, Oxford.
- Sokolovsky V.V. Planar and axisymmetric equilibrium of the plastic mass between rigid walls. J. Appl. Math. Mech., 1950, vol. 14, pp. 75-92.
- Durban D., Budiansky B. Plane-strain radial flow of plastic materials. J. Mech. Phys. Solids, 1978, vol. 26, no. 5, pp. 303-324. doi: 10.1016/0022-5096(78)90002-9
- Haddow J.B., Danyluk H.T. The flow of an incompressible elastic-perfectly plastic solid. Acta Mech., 1968, vol. 5, pp. 14-21. doi: 10.1007/BF01624440
- Avitzur B., Fueyo J., Thompson J. Analysis of plastic flow through inclined planes in plane strain. J. Eng. Ind. - T. ASME, 1967, vol. 89, no. 2, pp. 361-375. doi: 10.1115/1.3610053
- Avitzur B., Choi J.C. Analysis of central bursting defects in plane strain drawing and extrusion, J. Eng. Ind. - T. ASME, 1986, vol. 108, no. 4, pp. 317-321. doi: 10.1115/1.3187082
- Alexandrov S., Mustafa Y., Hwang Y.-M., Lyamina E. An accurate upper bound solution for plane strain extrusion through a wedge-shaped die, The Scientific World Journal, 2014, vol. 2014, 189070. doi: 10.1155/2014/189070
- Alexandrov S., Kuo C.-Y., Jeng Y.-R. An accurate numerical solution for the singular velocity field near the maximum friction surface in plane strain extrusion. Int. J. Sevastyanov G.M. /Вестник ПНИПУ. Механика 2 (2022) 5-9 Solids Struct., 2018, vol. 150, pp. 107-116. doi: 10.1016/ j.ijsolstr.2018.06.006
- Thore P., Pastor F., Pastor J., Kondo D. Closed-form solutions for the hollow sphere model with Coulomb and Drucker -Prager materials under isotropic loadings. CR Mecanique, 2009, vol. 337, pp. 260-267. doi: 10.1016/j.crme.2009.06.030
- Monchiet V., Kondo D. Exact solution of a plastic hollow sphere with a Mises - Schleicher matrix. Int. J. Eng. Sci., 2012, vol. 51, pp. 168-178. doi: 10.1016/j.ijengsci.2011.10.007
- Dos Santos T., Vadillo G. A closed-form yield criterion for porous materials with Mises - Schleicher - Burzynski matrix containing cylindrical voids. Acta Mech., 2021, vol. 232, pp. 1285-1306. doi: 10.1007/s00707-020-02925-y
- Green R.J. A plasticity theory for porous solids. Int. J. Mech. Sci., 1972, vol. 14, pp. 215-224. doi: 10.1016/0020-7403 (72)90063-X
- Gurson A.L. Continuum theory of ductile rupture by void nucleation and growth: Part 1 - yield criteria and flow rules for porous ductile media. J. Eng. Mater. - T. ASME, 1977, vol. 99, pp. 2-15. doi: 10.1115/1.3443401
- Durban D., Mear M.E. Asymptotic solution for extrusion of sintered powder metals. J. Appl. Mech. - T. ASME, 1991, vol. 58, pp. 582-584. doi: 10.1115/1.2897226
- Tirosh T., Iddan D. Forming analysis of porous materials. Int. J. Mech. Sci., 1989, vol. 31, pp. 949-965. doi: 10.1016/0020-7403(89)90035-0
- Govindarajan R.M., Aravas N. Asymptotic analysis of extrusion of porous metals. Int. J. Mech. Sci., 1991, vol. 33, pp. 505-527. doi: 10.1016/0020-7403(91)90014-T
- Saleh Ch.A.R., Ragab A.R., Samy S.N. Prediction of void growth in drawing and extrusion of voided metals. Mech. Mater., 2005, vol. 37, no. 9, pp. 915-924. doi: 10.1016/j.mechmat.2004.09.004
- Kailasam M., Aravas N., Ponte Castaneda P. Porous metals with developing anisotropy: Constitutive models, computational issues and applications to deformation processing. CMES - Computer Modeling in Engineering & Sciences, 2000, vol. 1, no. 2, pp. 105-118. doi: 10.3970/cmes.2000.001.265
- Aleksandrov S.E., Druyanov B.A. Investigating the process of the steady extrusion of a compacted material. J. Appl. Mech. Tech. Phy., 1991, vol. 31, no. 4, pp. 645-649. doi: 10.1007/BF00851344
- Alexandrov S., Chesnikova O., Pirumov A. An approximate solution for axisymmetric extrusion of porous material. J. Technol. Plasticity, 2007, vol. 32, pp. 13-27.
- Sevastyanov G.M., Sevastyanov A.M. Approximate analysis of extrusion process for Green type porous material. Mech. Solids, 2021, vol. 56, no. 7, pp. 1363-1372. doi: 10.3103/S0025654421070220
- Sevastyanov G.M. Filtration in fluid-saturated poro-plastic materials during lateral extrusion. PNRPU Mechanics Bulletin, 2019, vol. 2, pp. 163-171. doi: 10.15593/perm.mech/2019.2.13
- Sevastyanov G.M., Sevastyanov A.M. Filtration and heat processes in lateral extrusion of plasticallycompressible materials. J. Phys.: Conf. Ser., 2019, vol. 1203, 012022. doi: 10.1088/17426596/1203/1/012022
- Mear M.E., Durban D. Radial flow of sintered powder metals. Int. J. Mech. Sci., 1989, vol. 31, pp. 37-49. doi: 10.1016/0020-7403(89)90117-3
- Ponte Castaneda P. The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids, 1991, vol. 39, pp. 45-71. doi: 10.1016/0022-5096(91)90030-R
- Itskov M. Tensor algebra and tensor analysis for engineers with applications to continuum mechanics. 2015. Springer International Publishing, Switzerland.