ПОЛУЧЕНИЕ АКТИВИРОВАННОГО УГЛЯ ИЗ БИОМАССЫ В КАЧЕСТВЕ ЭЛЕКТРОДНОГО МАТЕРИАЛА ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ

Бесплатный доступ

Активированный уголь обладает превосходными электрохимическими характеристиками, такими как большая удельная площадь поверхности, быстрый перенос ионов/электронов, контролируемая химия поверхности, что делает его перспективным кандидатом в качестве электродного материала для электрохимических устройств. Биомасса из сельскохозяйственных продуктов и отходов является многообещающим прекурсором для производства активированного угля, поскольку она широко распространена и возобновляема, проста в обработке и экологически безопасна. В данном обзоре сравниваются электродные материалы, используемые для электрохимических устройств, приводятся их преимущества и недостатки, а также раскрывается актуальность использования углеродных материалов. В качестве перспективного электродного материала рассматривается биомасса различного состава. Приведены данные по методам получения активированного угля из биомассы, способам его активации и параметрам оценки эффективности электродных систем. Рассмотрены возможные модификации активированного угля, повышающие его проводимость. В заключение дано описание широкого круга подходящих источников биомассы и возможности их применения в различных электрохимических устройствах. На основании приведенных данных можно сделать вывод, что активированный уголь, полученный из биомассы, является перспективным кандидатом в качестве электрода для высокоэффективных электрохимических устройств.

Еще

Активированный уголь, электрохимические устройства, ионисторы, растительный материал, зеленая энергия

Короткий адрес: https://sciup.org/142240143

IDR: 142240143

Список литературы ПОЛУЧЕНИЕ АКТИВИРОВАННОГО УГЛЯ ИЗ БИОМАССЫ В КАЧЕСТВЕ ЭЛЕКТРОДНОГО МАТЕРИАЛА ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ

  • 1. Olabi A.G., Abbas Q., Al Makky A., Abdelkareem M.A. Supercapacitors as next generation energy storage devices: Properties and applications // Energy. 2022. Vol. 248. Id. 123617. DOI: 10.1016/j.energy.2022.123617
  • 2. Abechi S.E., Gimba C.E., Uzairu A., Dallatu Y.A. Preparation and characterization of activated carbon from palm kernel shell by chemical activation // Res. J. Chem. Sci. 2013. Vol. 3, iss. 7. P. 54–61. URL: http://www.isca.me/rjcs/Archives/v3/i7/8.ISCARJCS-2013-095.php
  • 3. Shaker M., Ghazvini A.A.S., Cao W., Riahifar R., Ge Q. Biomass-derived porous carbons as supercapacitor electrodes–A review // New Carbon Materials. 2021. Vol. 36, no. 3. P. 546–572. DOI: 10.1016/S1872-5805(21)60038-0
  • 4. Pandolfo A.G., Hollenkamp A.F. Carbon properties and their role in supercapacitors // Journal of Power Sources. 2006. Vol. 157, iss. 1. P. 11–27. DOI: 10.1016/j.jpowsour.2006.02.065
  • 5. Obreja V.V.N. On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material — a review // Physica E: Low-dimensional Systems and Nanostructures. 2008. Vol. 40, iss. 7. P. 2596–2605. DOI: 10.1016/j.physe.2007.09.044
  • 6. Farma R., Deraman M., Awitdrus A., Talib I.A., Taer E., Basri N.H., et al. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors // Bioresource Technol. 2013. Vol. 132. P. 254–261. DOI: 10.1016/j.biortech.2013.01.044
  • 7. Zhao L., Zhou J.H., Sui Z.J., Zhou X.G. Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst // Chem Eng Sci. 2010. Vol. 65, iss. 1. P. 30–35. DOI: 10.1016/j.ces.2009.03.026
  • 8. Dos Reis G.S., Larsson S.H., de Oliveira H.P., Thyrel M., Lima E.C. Sustainable biomass activated carbons as electrodes for battery and supercapacitors — A mini-review // Nanomaterials. 2020. Vol. 10, no. 7. Id. 1398. DOI: 10.3390/nano10071398
  • 9. Klass D.L. Biomass for renewable energy and fuels // Encycl. Energy. 2004. P. 193–212. DOI: 10.1016/B0-12-176480-X/00353-3
  • 10. Sharma V., Singh I., Chandra A. Hollow nanostructures of metal oxides as next generation electrode materials for supercapacitors // Sci Rep. 2018. Vol. 8. Id. 1307. DOI: 10.1038/s41598-018-19815-y
  • 11. Bashyam R., Zelenay P. A class of non-precious metal composite catalysts for fuel cells // Nature. 2006. Vol. 443. P. 63–66. DOI: 10.1038/nature05118
  • 12. Wang H., Lin J., Shen Z.X. Polyaniline (PANi) based electrode materials for energy storage and conversion // J Sci: Adv Mater Dev. 2016. Vol. 1, iss. 3. P. 225–255. DOI: 10.1016/j.jsamd.2016.08.001
  • 13. Peng C., Yan X.B., Wang R.T., Lang J.W., Ou Y.J., Xue Q.J. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes // Electrochim Acta. 2013. Vol. 87. P. 401–408. DOI: 10.1016/j.electacta.2012.09.082
  • 14. Nagel B., Dellweg H., Gierasch L.M. Glossary for chemists of terms used in biotechnology (IUPAC Recommendations1992) // Pure Appl. Chem. 1992. Vol. 64, no. 1. P. 143–168. DOI: 10.1351/pac199264010143
  • 15. Hesas R.H., Daud W.M.A.W., Sahu J.N., Arami-Niya A. The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review // Journal of Analytical and Applied Pyrolysis. 2013. Vol. 100. P. 1–11. DOI: 10.1016/j.jaap.2012.12.019
  • 16. Вервикишко Д.Е., Янилкин И.В., Добеле Г.В., Вольпертс А., Атаманюк И.Н., Саметов А.А., Школьников Е.И. Активированный уголь для электродов суперконденсаторов с водным электролитом // Теплофизика высоких температур. 2015. Т. 53, № 5. С. 799–
  • 806. DOI: 10.7868/S0040364415050270
  • 17. Возняковский А.П., Неверовская А.Ю., Возняковский А.А., Карманов А.П., Шугалей И.В. Биомасса борщевика как сырье для получения 2D наноуглеродов. Экологический аспект // Экологическая химия. 2020. Т. 29, № 4. С. 190–195. URL: https://www.elibrary.ru/item.asp?id=43105412
  • 18. Rufford T.E., Hulicova-Jurcakova D., Zhu Z., Lu G.Q. Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors // Electrochemistry Communications. 2008. Vol. 10, iss. 10. P. 1594–1597. DOI: 10.1016/j.elecom.2008.08.022
  • 19. Kalderis D., Bethanis S., Paraskeva P., Diamadopoulos E. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times // Bioresource Technology. 2008. Vol. 99, iss. 15. P. 6809–6816. DOI: 10.1016/j.biortech.2008.01.041
  • 20. Foo K.Y., Hameed B.H. Utilization of rice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation // Bioresource Technology. 2011. Vol. 102, iss. 20. P. 9814–9817. DOI: 10.1016/j.biortech.2011.07.102
  • 21. He X., Ling P., Qiu J., Yu M., Zhang X., Yu C., Zheng M. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density // Journal of Power Sources. 2013. Vol. 240. P. 109–113. DOI: 10.1016/j.jpowsour.2013.03.174
  • 22. Li X., Xing W., Zhuo S., Zhou J., Li F., Qiao S.-Z., et al. Preparation of capacitor’s electrode from sunflower seed shell // Bioresour Technol. 2011. Vol. 102, iss. 2. P. 1118–1123. DOI: 10.1016/j.biortech.2010.08.110
  • 23. Zhu H., Yin J., Wang X., Wang H., Yang X. Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors // Adv. Funct. Mater. 2013. Vol. 23, iss. 10. P. 1305–1312. DOI: 10.1002/adfm.201201643
  • 24. Zhu H., Wang X., Yang F., Yang X. Promising carbons for supercapacitors derived from fungi // Adv. Mater. 2011. Vol. 23, iss. 24. P. 2745–2748. DOI: 10.1002/adma.201100901
  • 25. Goldfarb J.L., Do G., Salari M., Grinstaff M.W. Biomassbased fuels and activated carbon electrode materials: An integrated approach to green energy systems // ACS Sustainable Chemistry & Engineering. 2017. Vol. 5, iss. 4. P. 3046–3054. DOI: 10.1021/acssuschemeng.6b02735
  • 26. Bi Z., Kong Q., Cao Y., Sun G., Su F., Wei X., et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review // Journal of materials chemistry A. 2019. Vol. 7, iss. 27. P. 16028-16045. DOI: 10.1039/C9TA04436A
  • 27. Rawat S., Mishra R.K., Bhaskar T. Biomass derived functional carbon materials for supercapacitor applications // Chemosphere. 2022. Vol. 286, part. 3. Id. 131961. DOI: 10.1016/j.chemosphere.2021.131961
  • 28. Abioye A.M., Ani F.N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review // Renewable and sustainable energy reviews. 2015. Vol. 52. P. 1282–1293. DOI: 10.1016/j.rser.2015.07.129
  • 29. Dhyani V., Bhaskar T. A comprehensive review on the pyrolysis of lignocellulosic biomass // Renewable Energy. 2018. Vol. 129, part B. P. 695–716. DOI: 10.1016/j.renene.2017.04.035
  • 30. Al Arni S. Comparison of slow and fast pyrolysis for converting biomass into fuel // Renewable Energy. 2018. Vol. 124. P. 197–201. DOI: 10.1016/j.renene.2017.04.060
  • 31. Funke A., Ziegler F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering // Biofuels, Bioprod., Biorefin. 2010. Vol. 4, iss. 2. P. 160–177. DOI: 10.1002/bbb.198
  • 32. Nizamuddin S., Baloch H.A., Griffin G.J., Mubarak N.M., Bhutto A.W., Abro R., Mazari S.A., Ali B.S. An overview of effect of process parameters on hydrothermal carbonization of biomass // Renewable and sustainable energy reviews. 2017. Vol. 73. P. 1289–1299. DOI: 10.1016/j.rser.2016.12.122
  • 33. Inari G.N., Petrissans M., Gerardin P. Chemical reactivity of heat-treated wood // Wood Sci. Technol. 2007. Vol. 41. P. 157–168. DOI: 10.1007/s00226-006-0092-7
  • 34. Antal M.J., Mochidzuki K., Paredes L.S. Flash carbonization of biomass // Ind. Eng. Chem. Res. 2003. Vol. 42, iss. 16. P. 3690–3699. DOI: 10.1021/ie0301839
  • 35. Cagnon B., Py X., Guillot A., Stoeckli F., Chambat G. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors // Bioresour. Technol. 2009. Vol. 100, iss. 1. P. 292–298. DOI: 10.1016/j.biortech.2008.06.009
  • 36. Thostenson E.T., Chou T.W. Microwave processing: fundamentals and applications // Composites Part A: Applied Science and Manufacturing. 1999. Vol. 30, iss. 9. P. 1055–1071. DOI: 10.1016/S1359-835X(99)00020-2
  • 37. Xie Z., Yang J., Huang X., Huang Y. Microwave processing and properties of ceramics with different dielectric loss // Journal of the European Ceramic Society. 1999. Vol. 19, iss. 3. P. 381–387. DOI: 10.1016/S0955-2219(98)00203-9
  • 38. Oghbaei M., Mirzaee O. Microwave versus conventional sintering: a review of fundamentals, advantages and applications // Journal of Alloys and Compounds. 2010. Vol. 494, iss. 1-2. P. 175–189. DOI: 10.1016/j.jallcom.2010.01.068
  • 39. Rodríguez-Reinoso F., Molina-Sabio M. Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview // Carbon. 1992. Vol. 30, iss. 7. P. 1111–1118. DOI: 10.1016/0008-6223(92)90143-K
  • 40. Cai Y., Luo Y., Xiao Y., Zhao X., Liang Y., Hu H., Dong H., Sun L., Liu Y., Zheng M. Facile synthesis of three-dimensional heteroatom-doped and hierarchical eggboxlike carbons derived from moringa oleifera branches for high-performance supercapacitors // ACS Appl. Mater. Interfaces. 2016. Vol. 8. P. 33060–33071. DOI: 10.1021/acsami.6b10893
  • 41. Li J., Liu W., Xiao D., Wang X. Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor // Appl. Surf. Sci. 2017. Vol. 416. P. 918–924. DOI: 10.1016/j.apsusc.2017.04.162
  • 42. Jiang W., Pan J., Liu X. A novel rod-like porous carbon with ordered hierarchical pore structure prepared from Albased metal-organic framework without template as greatly enhanced performance for supercapacitor // J. Power Sources. 2019. Vol. 409. P. 13–23.
  • DOI: 10.1016/j.jpowsour.2018.10.086
  • 43. Biswal M., Banerjee A., Deo M., et al. From dead leaves to high energy density supercapacitors // Energy & Environmental Science. 2013. Vol. 6, iss. 4. P. 1249–1259. DOI: 10.1039/C3EE22325F
  • 44. Ling Z., Wang Z., Zhang M., et al. Sustainable synthesis and assembly of biomass biomass-derived B/N co codoped carbon nanosheets with ultrahigh aspect ratio for high high-performance supercapacitors // Advanced Functional Mat. 2016. Vol. 26, iss. 1. P. 111–119. DOI: 10.1002/adfm.201504004
  • 45. Kubo S., White R.J., Yoshizawa N., et al. Ordered carbohydratecarbohydrate-derived porous carbons // Chemistry
  • of Materials. 2011. Vol. 23, iss. 22. P. 4882–4885. DOI: 10.1021/cm2020077
  • 46. Xu B., Hou S., Duan H., Cao G., Chu M., Yang Y. Ultramicroporous carbon aselectrode material for supercapacitors // J. Power Source. 2013. Vol. 228. P. 193–197. DOI: 10.1016/j.jpowsour.2012.11.122
  • 47. Chmiola J., Yushin G., Gogotsi Y. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer // Science. 2006. Vol. 313, iss. 5794. P. 1760–1763. DOI: 10.1126/science.1132195
  • 48. Inal I.I.G., Holmes S.M., Banford A., Aktas Z. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea // Applied Surface Science. 2015. Vol. 357, part. A. P. 696–703. DOI: 10.1016/j.apsusc.2015.09.067
  • 49. Jiang C., Yakaboylu G.A., Yumak T., Zondlo J.W., Sabolsky E.M., Wang J. Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes // Renewable Energy. 2020. Vol. 155. P. 38–52. DOI: 10.1016/j.renene.2020.03.111
  • 50. Yumak T., Yakaboylu G.A., Oginni O., Singh K., Ciftyurek E., Sabolsky E.M. Comparison of the electrochemical properties of engineered switchgrass biomass-derived activated carbon-based EDLCs // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020.
  • Vol. 586. Id. 124150. DOI: 10.1016/j.colsurfa.2019.124150
  • 51. Beidaghi M., Chen W., Wang C. Electrochemically activated carbon micro-electrode arrays for electrochemical micro-capacitors // Journal of power sources. 2011. Vol. 196, iss. 4. P. 2403–2409. DOI: 10.1016/j.jpowsour.2010.09.050
  • 52. Wei T., Wei X., Gao Y., Li H. Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors // Electrochimica Acta. 2015. Vol. 169. P. 186–194. DOI: 10.1016/j.electacta.2015.04.082
  • 53. Prabaharan S.R.S., Vimala R., Zainal Z. Nanostructured mesoporous carbon as electrodes for supercapacitors // Journal of Power Sources. 2006. Vol. 161, iss. 1. P. 730–736. DOI: 10.1016/j.jpowsour.2006.03.074
  • 54. Li W., Peng J., Zhang L., Yang K., Xia H., Zhang S., Guo S.H. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW // Waste Management. 2009. Vol. 29, iss. 2. P. 756–760. DOI: 10.1016/j.wasman.2008.03.004
  • 55. Cao L., Li H., Xu Z., Zhang H., Ding L., Wang S., et al. Comparison of the heteroatoms-doped biomass-derived carbon prepared by one-step nitrogen-containing activator for high performance supercapacitor // Diamond and Related Materials. 2021. Vol. 114. Id. 108316. DOI: 10.1016/j.diamond.2021.108316
  • 56. Cao H., Peng X., Liu M.Z.P., Xua B., Guo J. Oxygen functional groups improve the energy storage performances of graphene electrochemical supercapacitors // RSC Adv. 2018. Iss. 8. P. 2858–2865. DOI: 10.1039/C7RA12425B
  • 57. Li Z., Zhang L., Chen X., Li B., Wang H., Li Q. Threedimensional graphene-like porous carbon nanosheets derived from molecular precursor for high-performance supercapacitor application // Electrochim. Acta. 2019. Vol. 296. P. 8–17. DOI: 10.1016/j.electacta.2018.11.002
  • 58. Zhang Y., Chen H., Wang, S., Zhao X., Kong F. Regulatory pore structure of biomass-based carbon for supercapacitor applications // Microporous and Mesoporous Materials. 2020. Vol. 297. Id. 110032. DOI: 10.1016/j.micromeso.2020.110032
  • 59. Ding Z., Trouillet V., Dsoke S. Are functional groups beneficial or harmful on the electrochemical performance of activated carbon electrodes? // J. Electrochem. Soc. 2019. Vol. 166. Id. A1004. DOI: 10.1149/2.0451906jes
  • 60. Elmouwahidi A., Zapata-Benabithe Z., CarrascoMarín F., Moreno-Castilla C. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes // Bioresource Technol. 2012. Vol. 111. P. 185–190. DOI: 10.1016/j.biortech.2012.02.010
  • 61. Yang W., Li Y., Feng Y. High electrochemical performance from oxygen functional groups containing porous
  • activated carbon electrode of supercapacitors // Materials. 2018. Vol. 11, iss. 12. Id. 2455. DOI: 10.3390/ma11122455
  • 62. Wu F.C., Tseng R.L., Hu C.C., et al. Physical and electrochemical characterization of activated carbons prepared
  • from firwoods for supercapacitors // Journal of Power Sources. 2004. Vol. 138, iss. 1-2. P. 351–359. DOI: 10.1016/j.jpowsour.2004.06.023
  • 63. Phiri J., Dou J., Vuorinen T., et al. Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes // ACS Omega. 2019. Vol. 4, iss. 19. P. 18108–18117. DOI: 10.1021/acsomega.9b01977
  • 64. Thubsuang U., Laebang S., Manmuanpom N., et al. Tuning pore characteristics of porous carbon monoliths prepared from rubber wood waste treated with H3PO4 or NaOH and their potential as supercapacitor electrode materials // Journal of Materials Science. 2017. Vol. 52. P. 6837–6855. DOI: 10.1007/s10853-017-0922-z
  • 65. Kim Y.J., Lee B.J., Suezaki H., et al. Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors // Carbon. 2006. Vol. 44, iss. 8. P. 1592–1595. DOI: 10.1016/j.carbon.2006.02.011
  • 66. Wu J., Xia M., Zhang X., et al. Hierarchical porous carbon derived from wood tar using crab as the template: Performance on supercapacitor // Journal of Power Sources. 2020. Vol. 455. Id. 227982. DOI: 10.1016/j.jpowsour.2020.227982
  • 67. Liang C., Bao J., Li C., et al. One-dimensional hierarchically porous carbon from biomass with high capacitance as supercapacitor materials // Microporous and Mesoporous Materials. 2017. Vol. 251. P. 77–82. DOI: 10.1016/j.micromeso.2017.05.044
  • 68. Liu X., Ma C., Li J., et al. Biomass-derived robust threedimensional porous carbon for high volumetric performance supercapacitors // Journal of Power Sources. 2019. Vol. 412. P. 1–9. DOI: 10.1016/j.jpowsour.2018.11.032
  • 69. Balathanigaimani M.S., Shim W.G., Lee M.J., et al. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors // Electrochemistry Communications. 2008. Vol. 10, iss. 6. P. 868–871. DOI: 10.1016/j.elecom.2008.04.003
  • 70. Cossutta M., Vretenar V., Centeno T.A., et al. A comparative life cycle assessment of graphene and activated carbon in a supercapacitor application // Journal of Cleaner Production. 2020. Vol. 242. Id. 118468. DOI: 10.1016/j.jclepro.2019.118468
  • 71. Sudhan N., Subramani K., Karnan M., et al. Biomassderived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes // Energy & Fuels. 2017. Vol. 31, iss. 1. P. 977–985. DOI: 10.1021/acs.energyfuels.6b01829
  • 72. Si W.J., Wu X.Z., Xing W., et al. Bagasse-based nanoporous carbon for supercapacitor application // Journal of Inorganic Materials. 2011. Vol. 26, iss. 1. P. 107–113. URL: https://www.jim.org.cn/EN/10.3724/SP.J.1077.2010.10376
  • 73. Ma G., Yang Q., Sun K., et al. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor // Bioresource Technology. 2015. Vol. 197. P. 137–142. DOI: 10.1016/j.biortech.2015.07.100
  • 74. Zhao G., Li Y., Zhu G., et al. Biomass-based N, P, and S self-doped porous carbon for high-performance supercapacitors // ACS Sustainable Chemistry & Engineering. 2019. Vol. 7, iss. 14. P. 12052–12060. DOI: 10.1021/acssuschemeng.9b00725
  • 75. Zhang J., Gong L., Sun K., et al. Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application // Journal of Solid State Electrochemistry. 2012. Vol. 16. P. 2179–2186. DOI: 10.1007/s10008-012-1639-1
  • 76. Wang C., Wu D., Wang H., et al. A green and scalable route to yieldporous carbon sheets from biomass for supercapacitors with high capacity // Journal of Materials Chemistry A. 2018. Vol. 6, iss. 3. P. 1244–1254. DOI: 10.1039/C7TA07579K
  • 77. Kalpana D., Cho S.H., Lee S.B., et al. Recycled waste paper-A new source of raw material for electric double-layer capacitors // Journal of Power Sources. 2009. Vol. 190, iss. 2. P. 587–591. DOI: 10.1016/j.jpowsour.2009.01.058
  • 78. Bhattacharjya D., Yu J.S. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor // Journal of Power Sources. 2014. Vol. 262. P. 224–231. DOI: 10.1016/j.jpowsour.2014.03.143
  • 79. Zhao Y.Q., Lu M., Tao P.Y., et al. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors // Journal of Power Sources. 2016. Vol. 307. P. 391–400. DOI: 10.1016/j.jpowsour.2016.01.020
  • 80. Misra R. Recycled waste paper-An inexpensive carbon material for supercapacitor applications. Doctoral dissertation, Central Electrochemical Research Institute, USA, 2016. URL: http://hdl.handle.net/10919/71497
  • 81. Tian W., Gao Q., Zhang L., et al. Renewable graphenelike nitrogen-doped carbon nanosheets as supercapacitor electrodes with integrated high energy–power properties // Journal of Materials Chemistry A. 2016. Vol. 4, iss. 22. P. 8690–8699. DOI: 10.1039/C6TA02828D
  • 82. Liu M.C., Kong L.B., Lu C., et al. Waste paper based activated carbon monolith as electrode materials for high performance electric double-layer capacitors // RSC Advances. 2012. Vol. 2, iss. 5. P. 1890–1896. DOI: 10.1039/C2RA01175A
  • 83. Taer E., Deraman M., Talib I.A., et al. Physical, electrochemical and supercapacitive properties of activated carbon pellets from pre-carbonized rubber wood sawdust by CO2 activation // Current Applied Physics. 2010. Vol. 10, iss. 4. P. 1071–1075. DOI: 10.1016/j.cap.2009.12.044
  • 84. Ismanto A.E., Wang S., Soetaredjo F.E., et al. Preparation of capacitor’s electrode from cassava peel waste // Bioresource Technology. 2010. Vol. 101, iss. 10. P. 3534–3540. DOI: 10.1016/j.biortech.2009.12.123
  • 85. Ali G.M., Habeeb O.A., Algarni H., et al. CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study // Journal of Materials Science. 2019. Vol. 54. P. 683–692. DOI: 10.1007/s10853-018-2871-6
  • 86. Sun K., Leng C.Y., Jiang J.C., et al. Microporous activated carbons from coconut shells produced by selfactivation using the pyrolysis gases produced from them, that have an excellent electric double layer performance // New Carbon Materials. 2017. Vol. 32, iss. 5. P. 451–459. DOI: 10.1016/S1872-5805(17)60134-3
  • 87. Kalyani P., Anitha A. Refuse derived energy-tea derived boric acid activated carbon as an electrode material for electrochemical capacitors // Portugaliae Electrochimica Acta. 2013. Vol. 31, iss. 3. P. 165–174. DOI: 10.4152/pea.201303165
  • 88. Wang K., Zhao N., Lei S., et al. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors // Electrochimica Acta. 2015. Vol. 166. P. 1–11. DOI: 10.1016/j.electacta.2015.03.048
  • 89. Yu M., Han Y., Li J., Wang L. CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors // Chemical Engineering Journal. 2017. Vol. 317. P. 493–502. DOI: 10.1016/j.cej.2017.02.105
  • 90. Taer E., Apriwandi A., Taslim R., Agutino A., Yusra D.A. Conversion Syzygium oleana leaves biomass waste to porous activated carbon nanosheet for boosting supercapacitor performances // Journal of Materials Research and Technology. 2020. Vol. 9, iss. 6. P. 13332–13340. DOI: 10.1016/j.jmrt.2020.09.049
  • 91. Yang C., Chen C., Pan Y., Li S., Wang F., Li J., et al. Flexible highly specific capacitance aerogel electrodes based on cellulose nanofibers, carbon nanotubes and polyaniline // Electrochim Acta. 2015. Vol. 182. P. 264–271. DOI: 10.1016/j.electacta.2015.09.096
  • 92. Vivekchand S.R.C., Rout C.S., Subrahmanyam K.S., Govindaraj A., Rao C.N.R. Graphene-based electrochemical supercapacitors // J Chem Sci. 2008. Vol. 120. P. 9–13. DOI: 10.1007/s12039-008-0002-7
  • 93. Miller J., Dunn B., Tran T., Pekala R. Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes // J Electrochem Soc. 1997. Vol. 144, iss. 2. Id. L309. DOI: 10.1149/1.1838142
  • 94. Tao F., Zhao Y.Q., Zhang G.Q., Li H.L. Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors // Electrochem Commun. 2007. Vol. 9, iss. 6. P. 1282-1287. DOI: 10.1016/j.elecom.2006.11.022
  • 95. Li H., Yu M., Wang F., Liu P., Liang Y., Xiao J., et al. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials // Nat Commun. 2013. Vol. 4. Id. 1894. DOI: 10.1038/ncomms2932
  • 96. Prasad K.R., Miura N. Potentiodynamically deposited nanostructured manganese dioxide as electrode material for
  • electrochemical redox supercapacitors // J Power Sources. 2004. Vol. 135, iss. 1-2. P. 354–360. DOI: 10.1016/j.jpowsour.2004.04.005
  • 97. Yaqoob A.A., Ibrahim M.N.M., Yaakop A.S., Umar K., Ahmad A. Modified graphene oxide anode: A bioinspired waste material for bioremediation of Pb2+ with energy generation through microbial fuel cells // Chem. Eng. J. 2021. Vol. 417. Id. 128052. DOI: 10.1016/j.cej.2020.128052
  • 98. Hung Y.H., Liu T.Y., Chen H.Y. Renewable coffee wastederived porous carbons as anode materials for highperformance sustainable microbial fuel cells // ACS Sustain. Chem. Eng. 2019. Vol. 7, iss. 20. P. 16991–16999. DOI: 10.1021/acssuschemeng.9b02405
  • 99. Huggins T., Wang H., Kearns J., Jenkins P., Ren Z.J. Biochar as a sustainable electrode material for electricity production in microbial fuel cells // Bioresour. Technol. 2014. Vol. 157. P. 114–119. DOI: 10.1016/j.biortech.2014.01.058
Еще
Статья обзорная