Получение авермектинов: биотехнологии и органический синтез

Автор: Джафаров М.Х., Василевич Ф.И., Мирзаев М.Н.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры

Статья в выпуске: 2 т.54, 2019 года.

Бесплатный доступ

В предлагаемом обзоре проанализированы результаты исследований по различным аспектам совершенствования технологии получения авермектинов - 16-членных макроциклических лактонов, обладающих широким спектром противопаразитарного действия при высоком терапевтическом индексе и безвредности для млекопитающих (W.C. Campbell, 2012). Согласно опубликованным данным, уникальная способность авермектинов подавлять развитие насекомых, нематод и клещей связана с возможностью блокировать передачу нервного импульса в нервно-мышечном синапсе. Сущность этого механизма действия, приводящего к параличу и гибели паразитов, заключается в стимуляции выброса ионов хлора, деполяризации мембраны клеток и патологическом нарушении ее функций (A.J. Wolstenholme с соавт., 2016). Из известных 8 компонентов (А1a, А1b, А2а, А2b, B1a, B1b, В2a и В2b) авермектинового комплекса, продуцируемого микроорганизмом Streptomyces avermitilis , наиболее активны против возбудителей паразитозов авермектины группы В1 (S...

Еще

Авермектины, мильбемицины, немадектины, дорамектин, абамектин, ивермектин, моксидектин, оксим мильбемицина, 5-о-сукциноилавермектин в1, соединение с2017, оксимы авермектинов, органический синтез, антипаразитарные препараты, нематоциды, инсектоакарициды

Еще

Короткий адрес: https://sciup.org/142220097

IDR: 142220097   |   DOI: 10.15389/agrobiology.2019.2.199rus

Список литературы Получение авермектинов: биотехнологии и органический синтез

  • Macrolide antibiotics. Chemistry, biology and practice. 2nd ed./S. Omura (ed.). Elsevier Science, NY, 2002.
  • Campbell W.C. History of avermectin and ivermectin, with notes on the history of other macrocyclic lactone antiparasitic agents. Curr. Pharm. Biotechnol., 2012, 13(6): 853-865 ( ) DOI: 10.2174/138920112800399095
  • Omura S. Ivermectin: 25 years and still going strong. Int. J. Antimicrob. Agents, 2008, 31(2): 91-98 ( ) DOI: 10.1016/j.ijantimicag.2007.08.023
  • Crump A., Omura S. Ivermectin, ‘Wonder drug’ from Japan: the human use perspective. Proc. Jpn. Acad., Ser. B, 2011, 87(2): 13-28 ( ) DOI: 10.2183/pjab.87.13
  • Goodman and Gilman’s the pharmacological basis of therapeutics. 13th ed./L. Brunton, R. Hilal-Dandan, B.C. Knollman (eds.). McGraw Hill Medical, NY, 2018.
  • Сафиуллин Р.Т. Авермектины на российском ветеринарном рынке. Российский ветеринарный журнал, 2006, 2: 6-8.
  • Долженко Т.В. Инсектоакарициды на основе абамектина. Агрохимия, 2017, 4: 34-40.
  • Kitani S., Miyamoto K.T., Takamatsu S., Herawati E., Iguchi H., Nishitomi K., Uchida M., Nagamitsu T., Omura S., Ikeda H., Nihira T. Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. Proc. Natl. Acad. Sci. USA, 2011, 108: 16410-16415 ( )
  • DOI: 10.1073/pnas.1113908108
  • Corey E.J., Czako B., Kurti L. Molecules and medicine. Wiley-VCH Verlag, Weinheim, 2007.
  • Macrocyclic lactones in antiparasitic therapy/J. Vercruysse, R.S. Rew (eds.). Wallingford, CABI Publishing, NY, 2002.
  • Lynagh T., Lynch J.W. Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin. Front. Mol. Neurosci., 2012, 5: 60 ( )
  • DOI: 10.3389/fnmol.2012.00060
  • Chen I.S., Kubo Y. Ivermectin and its target molecules: shared and unique modulation mechanisms of ion channels and receptors by ivermectin. J. Physiol., 2018, 596(10): 1833-1845 ( )
  • DOI: 10.1113/JP275236
  • Chen I.S., Tateyama M., Fukata Y., Uesugi M., Kubo Y. Ivermectin activates GIRK channels in a PIP2-dependent, Gβγ-independent manner and an amino acid residue at the slide helix governs the activation. J. Physiol., 2017, 595(17): 5895-5912 ( )
  • DOI: 10.1113/JP274871
  • Hashimoto H., Messerli S.M., Sudo T., Maruta H. Ivermectin inactivates the kinase PAK1 and blocks the PAK1-dependent growth of human ovarian cancer and NF2 tumor cell lines. Drug Discov. Ther., 2009, 3(6): 243-246.
  • Gallardo F., Mariamé B., Gence R., Tilkin-Mariamé A.F. Macrocyclic lactones inhibit nasopharyngeal carcinoma cells proliferation through PAK1 inhibition and reduce in vivo tumor growth. Drug Des. Devel. Ther., 2018, 12: 2805-2814 ( )
  • DOI: 10.2147/DDDT.S172538
  • Melotti A., Mas C., Kuciak M., Lorente-Trigos A., Borges I., Altaba A.R. The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer. EMBO Molecular Medicine, 2014, 6(10): 1263-1278 ( )
  • DOI: 10.15252/emmm.201404084
  • Drinyaev V.A., Mosin V.A., Kruglyak E.B., Novik T.S., Sterlina T.S., Ermakova N.V., Kublik L.N., Levitman M.Kh., Shaposhnikova V.V., Korystov Y.N. Antitumor effect of avermectins. Eur. J. Pharmacol., 2004, 501(1-3): 19-23 ( )
  • DOI: 10.1016/j.ejphar.2004.08.009
  • Kwon Y.J., Petrie K., Leibovitch B.A., Zeng L., Mezei M., Howell L., Gil V., Christova R., Bansal N., Yang S., Sharma R., Ariztia E.V., Frankum J., Brough R., Sbirkov Y., Ashworth A., Lord C.J., Zelent A., Farias E., Zhou M.M., Waxman S. Selective inhibition of SIN3 corepressor with avermectins as a novel therapeutic strategy in triple-negative breast cancer. Mol. Cancer Ther., 2015, 14(8): 1824-1836 ( )
  • DOI: 10.1158/1535-7163.MCT-14-0980-T
  • Juarez M., Schcolnik-Cabrera A., Dueñas-Gonzalez A. The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug. Am. J. Cancer. Res., 2018, 8(2): 317-331 (https://www.ncbi.nlm.nih.gov/pubmed/29511601).
  • Mastrangelo E., Pezzullo M., De Burghgraeve T., Kaptein S., Pastorino B., Dallmeier K., de Lamballerie X., Neyts J., Hanson A. M., Frick D.N., Bolognesi M., Milani M. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J. Antimicrob. Chemother., 2012, 67(8): 1884-1894 ( )
  • DOI: 10.1093/jac/dks147
  • Kobylinski K.C., Foy B.D., Richardson J.H. Ivermectin inhibits the sporogony of Plasmodium falciparum in Anopheles gambiae. Malaria Journal, 2012, 11: 381 ( )
  • DOI: 10.1186/1475-2875-11-381
  • Lim L.E., Vilchèze C., Ng C., Jacobs W.R. Jr., Ramón-García S., Thompson C.J. Anthelmintic avermectins kill M. tuberculosis, including multidrug resistant clinical strains. Antimicrob. Agents Chemother., 2013, 57(2): 1040-1046 ( )
  • DOI: 10.1128/AAC.01696-12
  • Khoja S., Huynh N., Warnecke A.M.P., Asatryan L., Jakowec M.W., Davies D.L. Preclinical evaluation of avermectins as novel therapeutic agents for alcohol use disorders. Psychopharmacology (Berl.), 2018, 235(6): 1697-1709 ( )
  • DOI: 10.1007/s00213-018-4869-9
  • Zabala A., Vazquez-Villoldo N., Rissiek B., Gejo J., Martin A., Palomino A., Perez-Samartín A., Pulagam K.R., Lukowiak M., Capetillo-Zarate E., Llop J., Magnus T., Koch-Nolte F., Rassendren F., Matute C., Domercq M. P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis EMBO Mol. Med., 2018, 10(8): e8743 ( )
  • DOI: 10.15252/emmm.201708743
  • Di Virgilio F., Sarti A.C. Microglia P2X4 receptors as pharmacological targets for demyelinating diseases. EMBO Mol. Med., 2018, 10(8): e9369 ( )
  • DOI: 10.15252/emmm.201809369
  • Davies D.L., Bortolato M., Finn D.A., Ramaker M.J., Barak S., Ron D., Liang J., Olsen R.W. Recent advances in the discovery and preclinical testing of novel compounds for the prevention and/or treatment of alcohol use disorders. Alcohol Clin. Exp. Res., 2013, 37(1): 8-15 ( )
  • DOI: 10.1111/j.1530-0277.2012.01846.x
  • Pasqualetto G., Brancale A., Young M.T. The Molecular determinants of small-molecule ligand binding at P2X receptors. Front. Pharmacol., 2018, 9: 58 ( )
  • DOI: 10.3389/fphar.2018.00058
  • Van Voorhis W.C. Profile of William C. Campbell, Satoshi Omura, and Youyou Tu, 2015 Nobel Laureates in Physiology or Medicine. Proc. Natl. Acad. Sci. USA, 2015, 112(52): 15773-15776 ( )
  • DOI: 10.1073/pnas.1520952112
  • Wang S.-Y., Bo Y.-H., Zhou X., Chen J.H., Li W.J., Liang J.P., Xiao G.Q., Wang Y.C., Liu J., Hu W., Jiang B.L. Significance of heavy-ion beam irradiation-induced avermectin B1a production by engineered Streptomyces avermitilis. BioMed. Research. Int., 2017, 2017: 5373262 ( )
  • DOI: 10.1155/2017/5373262
  • Awasthi A., Razzak M., Al-Kassas R., Harvey J., Garg S. An overview on chemical derivatization and stability aspects of selected avermectin derivatives. Chem. Pharm. Bull., 2012, 60(8): 931-944 ( )
  • DOI: 10.1248/cpb.c12-00258
  • Cummings M., Breitling R., Takano E. Steps towards the synthetic biology of polyketide biosynthesis. FEMS Microbiol. Lett., 2014, 351: 116-125 ( )
  • DOI: 10.1111/1574-6968.12365
  • Zhuo Y., Zhang T., Wang Q., Cruz-Morales P., Zhang B., Liu M., Barona-Gómez F., Zhang L. Synthetic biology of avermectin for production improvement and structure diversification. Biotechnol. J., 2014, 9(3): 316-325 ( )
  • DOI: 10.1002/biot.201200383
  • Thuan N.H., Pandey R.P., Sohng J.K. Recent advances in biochemistry and biotechnological synthesis of avermectins and their derivatives. Appl. Microbiol. Biotechnol., 2014, 98(18): 7747-7759 ( )
  • DOI: 10.1007/s00253-014-5926-x
  • Alper H.S., Avalos J.L. Metabolic pathway engineering. Synth. Syst. Biotechnol., 2018, 3(1): 1-2 ( )
  • DOI: 10.1016/j.synbio.2018.01.002
  • Brady P.B., Oda S., Yamamoto H. Stereodivergent approach to the avermectins based on "Super Silyl" directed aldol reactions. Org. Lett., 2014, 16(15): 3864-3867 ( )
  • DOI: 10.1021/ol501327g
  • Hirama M. Total synthesis and related studies of large, strained, and bioactive natural products. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci., 2016, 92(8): 290-329 ( )
  • DOI: 10.2183/pjab.92.290
  • Yamashita S., Hayashi D., Nakano A., Hayashi Y., Hirama M. Total synthesis of avermectin B1a revisited. J. Antibiot. (Tokyo), 2016, 69(1): 31-50 ( )
  • DOI: 10.1038/ja.2015.47
  • Pitterna T., Cassayre J. Hüter O.F., Jung P.M., Maienfisch P., Kessabi F.M., Quaranta L., Tobler H. New ventures in the chemistry of avermectins. Bioorg. Med. Chem., 2009, 17(12): 4085-4095 ( )
  • DOI: 10.1016/j.bmc.2008.12.069
  • Bennett C.S., Galan M.C. Methods for 2-deoxyglycoside synthesis. Chem. Rev., 2018, 118(17): 7931-7985 ( )
  • DOI: 10.1021/acs.chemrev.7b00731
  • Kim S.B., Goodfellow M. Streptomyces avermitilis sp. nov., nom. rev., a taxonomic home for the avermectin-producing streptomycetes. Int. J. Syst. Evol. Microbiol., 2002, 52(Pt 6): 2011-2014 ( )
  • DOI: 10.1099/00207713-52-6-2011
  • Wu L., Sun Q., Sugawara H., Yang S., Zhou Y., McCluskey K., Vasilenko A., Suzuki K., Ohkuma M., Lee Y., Robert V., Ingsriswang S., Guissart F., Philippe D., Ma J. Global catalogue of microorganisms (gcm): a comprehensive database and information retrieval, analysis, and visualization system for microbial resources. BMC Genomics, 2013, 14: 933 ( )
  • DOI: 10.1186/1471-2164-14-933
  • Черменский Д.Н., Аданин В.А., Дриняев В.А., Ковалев В.Н., Головлева Л.А. Авермектины: биотехнологичекие особенности штамма продуцента Streptomyces avermitilis ВКМ Ас 1301. Прикладная биохимия и микробиология, 1991, 6: 838-844.
  • Дриняев В.А., Стерлина Т.С., Берёзкина Н.Е., Мосин В.А., Кругляк Е.Б., Есипов С.Е., Кобрин М.Б., Юркив В.А. Авермектины: естественная изменчивость штамма-продуцента Streptomices avermitilis ВКМ Ас 1301. Биотехнология, 1993, 11-12: 21-25.
  • Ki S.S., Jeong Y.-S., Kim P.-H., Chun G.-T. Effects of dissolved oxygen level on avermectin B1a production by Streptomyces avermitilis in computer-controlled bioreactor cultures. J. Microbiol. Biotechnol., 2006, 16(11): 1690-1698.
  • Gao H. Liu M., Zhou X., Liu J., Zhuo Y., Gou Z., Xu B., Zhang W., Liu X., Luo A., Zheng C., Chen X., Zhang L. Identification of avermectin-high-producing strains by high throughput screening methods. Appl. Microbiol. Biotechnol., 2010, 85(4): 219-1225 ( )
  • DOI: 10.1007/s00253-009-2345-5
  • Chen J., Liu M., Liu X., Miao J., Fu C., Gao H., Müller R., Zhang Q., Zhang L. Interrogation of Streptomyces avermitilis for efficient production of avermectins. Synth. Syst. Biotechnol., 2016, 1(1): 7-16 ( )
  • DOI: 10.1016/j.synbio.2016.03.002
  • Meng L., Xiong Z., Chu J., Wang Y. Enhanced production of avermectin by deletion of type III polyketide synthases biosynthetic cluster rpp in Streptomyces avermitilis. Lett. Appl. Microbiol., 2016, 63(5): 384-390 ( )
  • DOI: 10.1111/lam.12635
  • Дриняев В.А., Стерлина Т.С., Берёзкина Н.Е., Мосин В.А., Кругляк Е.Б., Зиновьев О.А., Юркив В.А. Авермектины: селекция штамма продуцента Streptomices avermitilis. ВКМ Ас 1301. Получение естественного мутанта. Биотехнология, 1994, 12: 16-18.
  • Дриняев В.А., Стерлина Т.Е., Берёзкина Н.Е., Мосин В.А., Кругляк Е.Б., Зиновьев О.А., Юркив В.А. Авермектины: получение индуцированных мутантных штаммов Streptomices avermitilis. Биотехнология, 1994, 4: 17-20.
  • Белявская Л.А., Козырицкая В.Е., Валагурова Е.В., Иутинская Г.А. Биологически активные вещества препарата аверком. Мikробiол. журн., 2012, 74(3): 10-15.
  • Адамович О.Т., Коломиец Э.И. Оптимизация состава питательной среды для глубинного культивирования актиномицета Streptomyces avermitilis X-1. Мат. Межд. науч.-практ. конф. «Перспективы и проблемы развития биотехнологии в рамках единого экономического пространства стран содружества, 25-28 мая 2005 г. Минск-Нарочь». Минск, 2005: 6-7.
  • Biliavska L., Kozyrits’ka V., Valaghurova H., Iutynska G. Effect of pyruvate and valine on avermectin biosintesis in Streptomyces avermitilis UCМ Ас-2179. Microbiol. Zhurn., 2007, 69(4): 10-17.
  • Мирзаев М.Н., Шерстнев В.В., Буянтогтох Ч. Липиды Streptomyces avermitilis: возможность применения в ветеринарной медицине. Биотехнология, 2004, 3: 75-77.
  • Kodym A., Afza R. Physical and chemical mutagenesis. Methods Mol. Biol., 2003, 236: 189-204 ( )
  • DOI: 10.1385/1-59259-413-1:189
  • Wang L.Y., Huang Z.L., Li G., Zhao H.X., Xing X.H., Sun W.T., Li H.P., Gou Z.X., Bao C.Y. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. J. Appl. Microbiol., 2010, 108(3): 851-858 ( )
  • DOI: 10.1111/j.1365-2672.2009.04483.x
  • Савченков С.Н., Мирзаев М.Н., Девришов Д.А. Некоторые особенности технологии получения авермектинов. Биотехнология, 1997, 3: 35-38.
  • Ikeda H., Kotaki H., Tanaka H., Omura S. Involvent of glucose catabolism in avermectin production by Streptomyces avermitilis. Antimicrob. Agents Chemother., 1988, 32(2): 282-284.
  • Cao P., Hu D., Zhang J., Zhang B., Gao Q. Enhanced avermectin production by rational feeding strategies based on comparative metabolomics. Wei Sheng Wu Xue Bao, 2017, 57(2): 281-292.
  • Tian P., Cao P., Hu D., Wang D., Zhang J., Wang L., Zhu Y., Gao Q. Comparative metabolomics reveals the mechanism of avermectin production enhancement by S-adenosylmethionine. J. Ind. Microbiol. Biotechnol., 2017, 44(4-5): 595-604 ( )
  • DOI: 10.1007/s10295-016-1883-y
  • Schulman M.D., Valentino D., Streicher S., Ruby C. Streptomyces avermitilis mutants defective in methylation of avermectins. Antimicrob. Agents Chemother., 1987, 31(5): 744-749 ( )
  • DOI: 10.1128/AAC.31.5.744
  • Yin P., Li Y.Y., Zhou J., Wang Y.H., Zhang S.L., Ye B.C., Ge W.F., Xia Y.L. Direct proteomic mapping of Streptomyces avermitilis wild and industrial strain and insights into avermectin production. J. Proteomics, 2013, 79: 1-12 ( )
  • DOI: 10.1016/j.jprot.2012.11.012
  • Миронов В.А., Сергеева A.B., Воронкова В.В., Даниленко В.Н. Биосинтез авермектинов: физиологические и технологические аспекты. Антибиотики и химиотерапия, 1997, 42(3): 31-36.
  • Миронов В.А., Сергеева А.В., Гаврилина А.В., Даниленко В.Н. Зависимость состава авермектинового комплекса Streptomyces avermitilis от содержания глюкозы в среде. Прикладная биохимия и микробиология, 2003, 2: 208-212.
  • Yoon Y.J., Kim E.-S., Hwang Y.-S., Choi C.-Y. Avermectin biochemical and molecular basis of its biosynthesis and regulation. Appl. Microbiol. Biotechnol., 2004, 63(6): 626-634 ( )
  • DOI: 10.1007/s00253-003-1491-4
  • Давыдова Е.М., Дриняев В.А., Кругляк Е.Б., Кантере В.М. Изучение условий экстракции авермектинового комплекса из высушенной мицелиальной биомассы Streptomyces avermetilis. Биотехнология, 2000, 6: 66-74.
  • Ikeda H., Ishikawa J., Hanamoto A., Shinose M., Kikuchi H., Shiba T., Sakaki Y., Hattori M., Omura S. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol., 2003, 21(5): 526-531 ( )
  • DOI: 10.1038/nbt820
  • Ikeda H., Kazuo S.Y., Omura S. Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters. J. Ind. Microbiol. Biotechnol., 2014, 41(2): 233-250 ( )
  • DOI: 10.1007/s10295-013-1327-x
  • Fischbach M.A., Walsh C.T. Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev., 2006, 106(8): 3468-3496 ( )
  • DOI: 10.1021/cr0503097
  • Dutta S., Whicher J.R., Hansen D.A., Hale W.A., Chemler J.A., Congdon G.R., Narayan A.R., Håkansson K., Sherman D.H., Smith J.L., Skiniotis G. Structure of a modular polyketide synthase. Nature, 2014, 510(7506): 512-517 ( )
  • DOI: 10.1038/nature13423
  • Kwan D.H., Schulz F. The stereochemistry of complex polyketide biosynthesis by modular polyketide synthases. Molecules, 2011, 16(7): 6092-6115 ( )
  • DOI: 10.3390/molecules16076092
  • Bayly C.L., Yadav V.G. Towards precision engineering of canonical polyketide synthase domains: recent advances and future prospects. Molecules, 2017, 22(2): 235 ( )
  • DOI: 10.3390/molecules22020235
  • Zhang W., Liu J. Recent advances in understanding and engineering polyketide synthesis. F1000Research, 2016, 5(F1000 Faculty Rev): 208 ( )
  • DOI: 10.12688/f1000research.7326.1
  • Yuzawa S., Backman T.W.H., Keasling J.D., Katz L. Synthetic biology of polyketide synthases. J. Ind. Microbiol. Biotechnol., 2018, 45(7): 621-633 ( )
  • DOI: 10.1007/s10295-018-2021-9
  • Smith J.L., Skiniotis G., Sherman D.H. Architecture of the polyketide synthase module: surprises from electron cryo-microscopy. Curr. Opin. Struct. Biol., 2015, (31): 9-19 ( )
  • DOI: 10.1016/j.sbi.2015.02.014
  • Klaus M., Grininger M. Engineering strategies for rational polyketide synthase design. Nat. Prod. Rep., 2018, 35(10): 1070-1081 ( )
  • DOI: 10.1039/c8np00030a
  • Wang F., Wang Y., Ji J., Zhou Z., Yu J., Zhu H., Su Z., Zhang L., Zheng J. Structural and functional analysis of the loading acyltransferase from avermectin modular polyketide synthase. ACS Chem. Biol., 2015, 10(4): 1017-1025 ( )
  • DOI: 10.1021/cb500873k
  • Sun P., Zhao Q., Yu F, Zhang H., Wu Z., Wang Y., Wang Y., Zhang Q., Liu W. Spiroketal formation and modification in avermectin biosynthesis involves a dual activity of Ave C. J. Am. Chem. Soc., 2013, 135(4): 1540-1548 ( )
  • DOI: 10.1021/ja311339u
  • Tang M.C., Zou Y., Watanabe K., Walsh C.T., Tang Y. Oxidative cyclization in natural product biosynthesis. Chem. Rev., 2017, 117(8): 5226-5333 ( )
  • DOI: 10.1021/acs.chemrev.6b00478
  • Kim M.S., Cho W.J., Song M.C., Park S.W., Kim K., Kim E., Lee N., Nam S.J., Oh K.H., Yoon Y.J. Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis. Microbial Cell Factories, 2017, 16: 9 ( )
  • DOI: 10.1186/s12934-017-0626-8
  • Nonaka K., Tsukiyama T., Okamoto Y., Sato K., Kumasaka C., Yammoto T., Maruyama F., Yoshikawa H. New milbemycins from Streptomyces hygroscopicus subsp. aureolacrimosus: fermentation, isolation and structure elucidation. J. Antibiot. (Tokyo), 2000, 53(7): 694-704.
  • He H., Ye L., Li C., Wang H., Guo X., Wang X., Zhang Y., Xiang W. SbbR/SbbA, an important ArpA/AfsA-like system, regulates milbemycin production in Streptomyces bingchenggensis. Front. Microbiol., 2018, 9: 1064 ( 2018)
  • DOI: 10.3389/fmicb.2018.01064
  • van Wezel G.P., McDowall K.J. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat. Prod. Rep., 2011, 28(7): 1311-1333 ( )
  • DOI: 10.1039/c1np00003a
  • Sun D., Wang Q., Chen Z., Li J., Wen Y. An Alternative Factor, s8, controls avermectin production and multiple stress responses in Streptomyces avermitilis. Front. Microbiol., 2017, 8: 736 ( )
  • DOI: 10.3389/fmicb.2017.00736
  • McCormick J.R., Flärdh K. Signals and regulators that govern Streptomyces development. FEMS Microbiol. Rev., 2012, 36(1): 206-231 ( )
  • DOI: 10.1111/j.1574-6976.2011.00317.x
  • Kitani S., Ikeda H., Sakamoto T., Noguchi S., Nihira T. Characterization of a regulatory gene, aveR, for the biosynthesis of avermectin in Streptomyces avermitilis. Appl. Microbiol. Biotechnol., 2009, 82(6): 1089-1096 ( )
  • DOI: 10.1007/s00253-008-1850-2
  • Guo J., Zhao J., Li L., Chen Z., Wen Y., Li J. The pathway-specific regulator AveR from Streptomyces avermitilis positively regulates avermectin production while it negatively affects oligomycin biosynthesis. Mol. Genet. Genomics, 2010, 283(2): 123-133 ( )
  • DOI: 10.1007/s00438-009-0502-2
  • Liu W., Zhang Q., Guo J., Chen Z., Li J., Wen Y. Increasing avermectin production in Streptomyces avermitilis by manipulating the expression of a novel TetR-family regulator and its target gene product. Appl. Environ. Microbiol., 2015, 81(15): 5157-5173 ( )
  • DOI: 10.1128/AEM.00868-15
  • Guo J., Zhang X., Lu X., Liu W., Chen Z., Li J., Deng L., Wen Y. SAV4189, a MarR-family regulator in Streptomyces avermitilis, activates avermectin biosynthesis. Front. Microbiol., 2018, 9: 1358 ( )
  • DOI: 10.3389/fmicb.2018.01358
  • Sun Y., Zhou X., Liu J., Bao K., Zhang G., Tu G., Kieser T., Deng Z. Streptomyces nanchangensis, a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters. Microbiology, 2002, 148(Pt 2): 361-371 ( )
  • DOI: 10.1099/00221287-148-2-361
  • Yang L.Y., Wang J.D., Zhang J., Xue C.Y., Zhang H., Wang X.J., Xiang W.S. New nemadectin congeners with acaricidal and nematocidal activity from Streptomyces microflavus neau3 Y-3. Bioorg. Med. Chem. Lett., 2013, 23(20): 5710-5713 ( )
  • DOI: 10.1016/j.bmcl.2013.08.002
  • Gao C., Wang Y., Chen Y., He B., Zhang R., Xu M., Huang R. Two new avermectin derivatives from the Beibu Gulf gorgonian Anthogorgia caerulea. Chem. Biodivers., 2014, 11(5): 812-818 ( )
  • DOI: 10.1002/cbdv.201300265
  • Wong F.T., Khosla C. Combinatorial biosynthesis of polyketides -a perspective. Curr. Opin. Chem. Biol., 2012, 16(1-2): 117-123 ( )
  • DOI: 10.1016/j.cbpa.2012.01.018
  • Cane D.E. Nature as organic chemist. J. Antibiot. (Tokyo), 2016, 69(7): 473-485 ( )
  • DOI: 10.1038/ja.2016.55
  • Blakemore D.C., Castro L., Churcher I., Rees D.C., Thomas A.W., Wilson D.M., Wood A. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem., 2018, 10(4): 383-394 ( )
  • DOI: 10.1038/s41557-018-0021-z
  • Zhang J., Yan Y.J., An J., Huang S.X., Wang X.J., Xiang W.S. Designed biosynthesis of 25-methyl and 25-ethyl ivermectin with enhanced insecticidal activity by domain swap of avermectin polyketide synthase. Microbial Cell Factories, 2015, 14: 152 ( )
  • DOI: 10.1186/s12934-015-0337-y
  • Zhao X., Wang Y., Wang S., Chen Z., Wen Y., Song Y. Construction of a doramectin producer mutant from an avermectin-overproducing industrial strain of Streptomyces avermitilis. Can. J. Microbiol., 2009, 55(12): 1355-1363 ( )
  • DOI: 10.1139/W09-098
  • Deng Q., Zhou L, Luo M., Deng Z., Zhao C. Heterologous expression of avermectins biosynthetic gene cluster by construction of a bacterial artificial chromosome library of the producers. Synth. Syst. Biotechnol., 2017, 2(1): 59-64 ( )
  • DOI: 10.1016/j.synbio.2017.03.001
  • Wang X.J., Zhang J., Wang J.D., Huang S.X., Chen Y.H., Liu C.X., Xiang W.S. Four new doramectin congeners with acaricidal and insecticidal activity from Streptomyces avermitilis NEAU1069. Chem. Biodivers., 2011, 8(11): 2117-2125 ( )
  • DOI: 10.1002/cbdv.201000295
  • Wang J.B., Pan H.X., Tang G.L. Production of doramectin by rational engineering of the avermectin biosynthetic pathway. Bioorg. Med. Chem. Lett., 2011, 21(11): 3320-3323 ( )
  • DOI: 10.1016/j.bmcl.2011.04.008
  • Wolstenholme A.J., Maclean M.J., Coates R., McCoy C.J., Reaves B.J. How do the macrocyclic lactones kill filarial nematode larvae? Invert. Neurosci., 2016, 16(3): 7 ( )
  • DOI: 10.1007/s10158-016-0190-7
  • Prichard R., Ménez C., Lespine A. Moxidectin and the avermectins: consanguinity but not identity. Int. J. Parasitol. Drugs Drug Resist., 2012, 2: 134-153 ( )
  • DOI: 10.1016/j.ijpddr.2012.04.001
  • Mounsey K.E., Walton S.F., Innes A., Cash-Deans S., McCarthy J. In vitro efficacy of moxidectin versus ivermectin against Sarcoptes scabiei. Antimicrob. Agents Chemother., 2017, 61(8): e00381-17 ( )
  • DOI: 10.1128/AAC.00381-17
  • Raymond V., Sattelle D.B. Novel animal-health drug targets from ligand-gated chloride channels. Nat. Rev. Drug Discov., 2002, 1(6): 427-436 ( )
  • DOI: 10.1038/nrd821
  • Wolstenholme A.J., Rogers A.T. Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology, 2005, 131 Suppl: S85-95 ()
  • DOI: 10.1074/jbc.R112.406280
  • Estrada-Mondragon A., Lynch J.W. Functional characterization of ivermectin binding sites in α1β2γ2L GABA(A) receptors. Front. Mol. Neurosci., 2015, 8: 55 ( )
  • DOI: 10.3389/fnmol.2015.00055
  • Wolstenholme A.J. Glutamate-gated chloride channels. J. Biol. Chem., 2012, 287(48): 40232-40238 ( )
  • DOI: 10.1074/jbc.R112.406280
  • Degani-Katzav N., Gortler R., Weissman M., Paas Y. Mutational analysis at intersubunit interfaces of an anionic glutamate receptor reveals a key interaction important for channel gating by ivermectin. Front. Mol. Neurosci., 2017, 10: 92 ( )
  • DOI: 10.3389/fnmol.2017.00092
  • Stokes L., Layhadi J.A., Bibic L., Dhuna K., Fountain S.J. P2X4 receptor function in the nervous system and current breakthroughs in pharmacology. Front. Pharmacol., 2017, 8: Article 291 ( )
  • DOI: 10.3389/fphar.2017.00291
  • Godoy P., Che H., Beech R.N., Prichard R.K. Characterisation of P-glycoprotein-9.1 in Haemonchus contortus. Parasites & Vectors, 2016, 9: 52 ( )
  • DOI: 10.1186/s13071-016-1317-8
  • Mealey K.L., Bentjen S.A., Gay J.M., Cantor G.H. Ivermectin sensitivity in collies is associated with a deletion mutation of the mdr1 gene. Pharmacogenetics, 2001, 11(8): 727-733 ( )
  • DOI: 10.1097/00008571-200111000-00012
  • Xin-Jun Z., Wen-Cai L., Ya-Ning F., Lin H. High γ-aminobutyric acid content, a novel component associated with resistance to abamectin in Tetranychus cinnabarinus (Boisduval). J. Insect. Physiol., 2010, 56(12): 1895-1900 ( )
  • DOI: 10.1016/j.jinsphys.2010.08.011
  • Chen L.-P., Wang P., Sun Y.-J., Wu Y.-J. Direct interaction of avermectin with epidermal growth factor receptor mediates the penetration resistance in Drosophila larvae. Open Biol., 2016, 6(4): 150231 ( )
  • DOI: 10.1098/rsob.150231
  • Driggers E.M., Hale S.P., Lee J., Terrett N.K. The exploration of macrocycles for drug discovery -an underexploited structural class. Nat. Rev. Drug Discov., 2008, 7(7): 608-624 ( )
  • DOI: 10.1038/nrd2590
  • Wessjohann L.A., Ruijter E., Garcia-Rivera D., Brandt W. What can a chemist learn from nature’s macrocycles? -A brief conceptual view. Mol. Divers., 2005, 9(1-3): 171-186 ( )
  • DOI: 10.1007/s11030-005-1314-x
  • Yudin A.K. Macrocycles: lessons from the distant past, recent developments, and future directions. Chem. Sci., 2015, 6(1): 30-49 ( )
  • DOI: 10.1039/c4sc03089c
  • Fisher M.H. Recent advances in avermectin research. Pure App. Chem., 1990, 62(7): 1231-1240 ( )
  • DOI: 10.1351/pac199062071231
  • Dzhafarov M.Kh. Evolution in chemotherapy of human and animal helminthiases (review). Sel’skokhozyaistvennaya biologiya, 2013, 4: 26-44 ( )
  • DOI: 10.15389/agrobiology.2013.4.26eng
  • Chernoburova E.I., Danchenko K.V., Shchetinina M.A., Zharov A.A., Kolobov A.V., Dzhafarov M.Kh., Vasilevich F.I., Zavarzin I.V. Synthesis of 5,4-di-O-succinoylavermectin B1. Russ. Chem. Bull., 2016, 65(12): 2952-2955 ( )
  • DOI: 10.1007/s11172-016-1684-5
  • Chernoburova E.I., Polyukhova E.S., Shchetinina M.A., Kolobov A.V., Dzhafarov M.Kh., Vasilevich F.I., Zavarzin I.V. Synthesis of esters of bile acids and avermectin B. Russ. Chem. Bull., 2016, 65(12): 2956-2964 ( )
  • DOI: 10.1007/s11172-016-1685-4
  • Chernoburova E.I., Lishchuk V.A., Ovchinnikov K.L., Kolobov A.V., Dzhafarov M.Kh., Vasilevich F.I., Zavarzin I.V. Reaction of 5-O-succinoylavermectin B1 with alkylating agents. Russ. Chem. Bull., 2016, 65(12): 2965-2969 ( )
  • DOI: 10.1007/s11172-016-1686-3
  • Blinnikov A.N., Chernoburova E.I., Kolotyrkina N.G. Shchetinina M.A., Lishchuk V.A., Ovchinnikov K.L., Kolobov A.V., Dzhafarov M.Kh., Vasilevich F.I., Zavarzin I.V. Synthesis of ivermectin-4″,5-diyl. Russ. Chem. Bull., 2018, 67(5): 833-835 ( )
  • DOI: 10.1007/s11172-018-2145-0
  • Shchetinina M.A., Chernoburova E.I., Kolotyrkina N.G., Dzhafarov M.Kh., Vasilevich F.I., Zavarzin I.V. Synthesis of sodium 5-sulfate-ivermectin and disodium 4,5-disulfate-ivermectin. Russ. Chem. Bull., 2018, 67(5): 836-839 ( )
  • DOI: 10.1007/s11172-018-2146-z
  • Zeng X., Tian X., Hong X., Yu Y., Deng Z., Zhao C. Patent CN 103833811 A. Abamectin derivative and preparation method thereof. Appl. 2014. Publ. 2014.
  • Li Y., Qin Y., Liu S., Xing R., Yu H., Li K., Li P. Preparation, characterization, and insecticidal activity of avermectin-grafted-carboxymethyl chitosan. Biomed. Res. Int., 2016, 2016: 9805675 ( )
  • DOI: 10.1155/2016/9805675
  • Дел Россо Д. Розацеа кожи: патогенез, клинические проявления, современные рекомендации по тактике ведения пациентов. Вестник дерматологии и венерологии, 2016, 2: 21-31 ( )
  • DOI: 10.25208/0042-4609-2016-0-2-21-31
  • Джафаров М.Х., Шемякова С.А., Мирзаев М.Н., Есаулова Н.В., Василевич Ф.И. Исследование нематоцидной и инсектоакарицидной активности препарата сумектин. Медицинская паразитология и паразитарные болезни, 2017, 3: 25-28.
  • Джафаров М.Х., Мирзаева К.М., Василевич Ф.И., Мирзаев М.Н., Мельницкая Т.И. Методические положения по применению препарата Гемакс (Сумектин) при стронгилятозах желудочно-кишечного тракта овец. М., 2018.
  • Мирзаева К.М., Земцова Л.К., Мирзаев М.Н., Джафаров М.Х., Мельницкая Т.И., Юсуфов Ю.А. Параметры острой и хронической токсичности инсектицидного препарата «ВЭИС-2». Ветеринария, зоотехния и биотехнология, 2017, 2: 16-21.
  • Земцова Л.К., Мирзаев М.Н., Джафаров М.Х., Мирзаева К.М. Инсектицидная активность авермектинсодержащего препарата ВЭИС-2 против Tineola bisselliella и Attagenus smirnovi Zhant. Ветеринария, зоотехния и биотехнология, 2017, 3: 73-78.
Еще
Статья обзорная